Tub sonlar bilan boʻgʻliq boʻlgan baʼzi bir masalalar


Download 195.89 Kb.
bet7/11
Sana24.06.2023
Hajmi195.89 Kb.
#1653544
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
odiljon

14-Ta’rif. Agar (a,m)=1 bo`lib, =(m) bo`lsa, u holda a son m Modul bo`yicha boshlang`ich ildiz deyiladi. (m) ning o`zidan boshqa hamma bo`luvchilarini topganimizda, bu bo`luvchilardagi ixtiyoriy a son bo`lganda a son uchun a1(modm) bo`lsa, u holda a son m Modul bo`yicha boshlang`ich ildiz bo`ladi. 4,5,6,7,8,9,10 sonlarning ham 11 Modul bo`yicha boshlang`ich ildiz yoki boshlang`ich ildiz emas ekanligini shu yo`l bilan tekshirib ko`riladi. Ba’zi modulga ko`ra boshlang`ich ildiz bo`lmasligi mumkin. Masalan, m=5 bo`lsa, (15)=8 bo`lib, ko`rsatkichi 8 ga teng bo`lgan son mavjud emas. Boshlang`ich ildizlar faqatgina m=2, 4, r, 2p (r-toq tub son,  1 natural son) sonlar uchun mavjud bo`ladi. Boshlang`ich ildizlar bevosita hisoblash usulida topiladi.
Lemma. r-tub son bo`lib,  son r-1 sonning bo`luvchisi bo`lsin, u holda r Modul bo`yicha chegirmalarning keltirilgan sinflar sistemasida  ko`rsatkichga tegishli sinflar soni () ta bo`ladi.
19-Teorema. r tub Modul bo`yicha tuzilgan r-1 sonning har bir bo`luvchisi ( ) ta sinfning ko`rsatkichi bo`ladi. Xususiy holda (r-1) ta boshlang`ich ildizlar sinfi mavjud Indekslar. Har qanday r tub Modul bo`yicha boshlang`ich ildiz mavjudligi bilan tanishgan edik. Ma’lumki, g son r tub Modul bo`yicha boshlang`ach ildiz bo`lsa, u holda
g0,g1,g2,...,gp-2 (22)
sonlar qatori shu r Modul bo`yicha chegirmalarning keltirilgan sistemasini tashkil qiladi. (22) ketma-ketlikning hadlari r bilan o`zaro tub bo`lib, ular r Modul bo’yicha (r)= r-1 ta sinfning vakillaridan iboratdir. Demak, (a; r)=1 bo`lsa, u holda (22) ketma-ketlikda r Modul bo’yicha a son bilan taqqoslanadigan yagona element topiladi, ya’ni
g=a(mod r) (23)
taqqoslama o`rinli bo`ladi.
15-Ta’rif. Agar g son r tub modul bo`yicha boshlang`ich ildiz bo`lib, (a; r)=1 bo`lganda g=a(mod r) taqqoslama to`g`ri bo`lsa, u holda  0 butun son a sonning r modul bo`yicha g asosga nisbatan indeksi deyiladi va u =indg a kabi belgilanadi. Agar asos oldindan berilgan bo`lsa, a ning indeksi ind a orqali belgilanadi. Yuqoridagi tushunchalarga asosan, har bir (a; r)=1 shartni qanoatlantiruvchi a son, berilgan asos bo`yicha
0, 1, 2, ... r-2 (24)
sonlarning bittasi bilan aniqlanuvchi indeksga ega ekan. Asosning o`zgarishi bilan indeks ham o`zgaradi. Har bir (a; r)=1 qanoatlantiruvchi a soni, g boshlang`ich ildiz bo`yicha cheksiz ko`p indeksga ega bo`ladi. Bu indekslarning barchasi (modr) taqqoslamani qanoatlantiradi. Bu taqqoslama o`rinli bo`lishi uchun 1(mod r-1) taqqoslamaning bajarilishi zarur va yetarlidir.
Indekslar quyidagi xossalarga ega:

Download 195.89 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling