University of business and science


,2,8,…\dfrac{1}{2},2,8, \ldots


Download 337.13 Kb.
bet7/9
Sana10.04.2023
Hajmi337.13 Kb.
#1348063
1   2   3   4   5   6   7   8   9
Bog'liq
matematika N.Yuldasheva mustaqil ish

12,2,8,…\dfrac{1}{2},2,8, \ldots21​,2,8,…start fraction, 1, divided by, 2, end fraction, comma, 2, comma, 8, comma, dots progressiyaning keyingi hadi nechaga teng?


  • Javobingiz quyidagicha boʻlishi kerak:

  • 6666 kabi butun son

  • 3/53/53/53, slash, 5 kabi soddalashtirilga toʻgʻri kasr

  • 7/47/47/47, slash, 4 kabi soddalashtirilgan notoʻgʻri kasr

  • 1 3/41\ 3/41 3/41, space, 3, slash, 4 kabi aralash son

  • 0.750.750.750, point, 75 kabi aniq oʻnli kasr

  • 12 pi12\ \text{pi}12 pi12, space, start text, p, i, end text yoki 2/3 pi2/3\ \text{pi}2/3 pi2, slash, 3, space, start text, p, i, end text kabi pi ning karralisi

TekshirishIzoh
Shunga oʻxshash masalalarni yechmoqchimisiz? Ushbu mashqni koʻring.
Rekursiv formulani yozish
54,18,6,...54,18,6,...54,18,6,...54, comma, 18, comma, 6, comma, point, point, pointning rekursiv formulasini yozishimiz kerak boʻlsin. Biz bilamizki, progressiya maxraji 13\maroonC{\dfrac{1}{3}}31​start color #ed5fa6, start fraction, 1, divided by, 3, end fraction, end color #ed5fa6 ga teng. Bundan tashqari, birinchi had 54\blueD{54}54start color #11accd, 54, end color #11accd ga teng. Demak, quyidagi progressiya uchun rekursiv formula:
{a(1)=54a(n)=a(n−1)⋅13\begin{cases}a(1) = \blueD{54} \\\\ a(n) = a(n-1)\cdot\maroonC{\dfrac{1}{3}} \end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧​a(1)=54a(n)=a(n−1)⋅31​​
1-masala

  • Joriy


12,2,8,…\dfrac{1}{2},2,8, \ldots21​,2,8,…start fraction, 1, divided by, 2, end fraction, comma, 2, comma, 8, comma, dots progressiya uchun rekursiv formuladagi kkkk va rrrr ni toping.
{a(1)=ka(n)=a(n−1)⋅r\begin{cases}a(1) = k \\\\ a(n) = a(n-1)\cdot r \end{cases}⎩⎪⎪⎨⎪⎪⎧​a(1)=ka(n)=a(n−1)⋅r​
k=k=k=k, equals

1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling