Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
λ
2 y, 0 ≤ x ≤ π (3.3.1) 151 Shturm-Liuvill tenglamasini qaraylik. Bu yerda q(x) haqiqiy funksiya bo‘lib, quyidagi shartlarni qanoatlantirsin: q(x) ∈ W n 2 [0, π], kq(x)k = W n 2 [0,π] v u u u t n X j=0 π Z 0 ¯ ¯q (j) (x) ¯ ¯ 2 . (3.3.2) c(x, λ) va s(x, λ) orqali (3.3.1) tenglamaning mos ravishda c(0, λ) = 1, c 0 (0, λ) = 0 va s(0, λ) = 0, s 0 (0, λ) = 1 boshlang‘ich shartlarni qanoatlantiruvchi yechim- larini belgilaymiz. U holda, c(x, λ) yechim uchun ushbu [328] c(x, λ) = cos λx + x Z 0 K(x, t) cos λtdt, (3.3.3) K(x, x) = 1 2 x Z 0 q(t)dt (3.3.5) tasvir o‘rinli. Agar q(x) funksiya n marta differensiallanuvchi bo‘lsa, u holda K(x, t) funksiya n + 1 marta differensiallanuvchi bo‘ladi. Shuning uchun (3.3.3) tasvirni o‘ng tomonidagi ikkinchi hadni n + 1 marta bo‘laklab integrallash nati- jasida c(x, λ) yechim uchun λ −1 ning darajalariga nisbatan asimptotik yoyilma olishimiz mumkin. Bu yoyilmadagi qoldiq had o(λ −n−1 ) tartibda bo‘ladi. Ammo, bu yoyilmadagi koeffitsiyentlarni va qoldiq hadning ko‘rinishini aniq topish ju- da mushkul. Bunday asimptotik yoyilmani to‘g‘ridan-to‘g‘ri (3.3.1) tenglamadan foydalanib ham keltirib chiqarish mumkin. Bu ish ilk bor V.A.Marchenko [186], tomonidan amalga oshirilgan. (3.3.1) tenglamaning yechimini quyidagi ko‘rinishda izlaymiz: y(x, λ) = e iλx · 1 + u 1 (x) 2iλ + u 2 (x) (2iλ) 2 + . . . + u n (x) (2iλ) n + u n+1 (x, λ) (2iλ) n+1 ¸ . (3.3.5) Bu tenglikning o‘ng tomonini (3.3.1) tenglamaga qo‘yib, ushbu u 0 1 (x) = q(x), u 0 k (x) = L[u k−1 (x)], k = 2, 3, . . . , n, (3.3.6) L[u n+1 (x, λ)] = 2iλu 0 n+1 (x, λ) − 2iλL[u n (x)] (3.3.7) tenglamalar sistemasini hosil qilamiz. u n+1 (x, λ) qoldiq had uchun olingan (3.3.7) tenglamani u 00 n+1 (λ, x) + 2iλu 0 n+1 (λ, x) = 2iλL[u n (x)] + q (x) u n+1 (λ, x) (3.3.8) 152 ko‘rinishda yozish mumkin. Oxirgi tenglamaga o‘zgarmasni variatsiyalash usulini qo‘llab, u n+1 (x, λ) qoldiq hadga nisbatan u n+1 (x, λ) = x Z 0 ³ 1 − e −2iλ(x−t) ´ L[u n ]dt+ + x Z 0 (2iλ) −1 ³ 1 − e −2iλ(x−t) ´ q(x)u n+1 (t, λ) dt (3.3.9) integral tenglamani keltirib chiqaramiz. (3.3.7) tenglamani quyidagi qulay shaklga keltirish mumkin: L £ e iλx u n+1 (x, λ) ¤ − λ 2 £ e iλx u n+1 (x, λ) ¤ = −2iλe iλx L[u n (x)]. Agar u j , j = 1, n + 1 funksiyalarni ushbu u k (x) = x R 0 L[u k−1 (t)]dt, u 1 (x) = x R 0 q(t)dt, k = 2, 3, . . . , n, u n+1 (x) = x R 0 L[u n (t)]dt, u n+1 (x, λ) = e −iλx v n+1 (x, λ) (3.3.10) ko‘rinishda tanlasak, u holda (3.3.5) tenglik yordamida aniqlangan y(x, λ) funksiya (3.3.1) tenglamani qanoatlantiradi. Bu yerda v n+1 (x, λ) funksiya L[v n+1 (x, λ)] − λ 2 v n+1 (x, λ) = −2iλe iλx u 0 n+1 (x) (3.3.11) tenglamani va v n+1 (0, λ) = v 0 n+1 (0, λ) = 0 (3.3.11 0 ) boshlang‘ich shartlarni qanoatlantiradi. (3.3.10) tengliklardan L[u n ] = (−1) n q (n) (x) + ϕ n (x) tenglik o‘rinli ekanligini topish mumkin. Bu yerda ϕ n (x) - kamida bir mar- ta uzluksiz differensiallanuvchi funksiya. Oxirgi tenglikdan va (3.3.9) integral tenglamadan foydalanib, u n+1 (x, λ) qoldiq had uchun ushbu u n+1 (x, λ) = u n+1 (x) − θ n (x, λ) + u (1) n (x, λ) 2iλ , u 0 n+1 (x, λ) = 2iλθ n (x, λ) + u (2) n (x, λ), (3.3.10 0 ) u 00 n+1 (x, λ) = 4λ 2 θ n (x, λ) + 2iλu (3) n+1 (x, λ) munosabatlarni topamiz. Bu yerda θ n (x, λ) = (−1) n e −2iλx x Z 0 q (n) (t)e 2iλt dt, (3.3.10 00 ) 153 u (j) n+1 (x, λ), j = 1, 2, 3 funksiyalar 0 ≤ x ≤ π, 1 ≤ λ < ∞ sohada tekis chegar- alangan. Agar q(x) ∈ W n 2 [0, π] bo‘lsa, u holda (3.3.10) formulaga induksiya usuli- ni qo‘llab, u k (x) + (−1) k q (k−2) (x) ∈ W n+3−k 2 [0, π], k = 2, 3, ..., n + 1 (3.3.12) ekanligini topamiz. Shuning uchun u 0 n+1 (x) ∈ L 2 [0, π]. Endi (3.3.1) tenglamaning c(x, λ) va s(x, λ) yechimlari yordamida ω(x, t, λ) = s(x, λ)c(t, λ) − s(t, λ)c(x, λ) Koshi funksiyasini tuzib olamiz. O‘zgarmasni variatsiyalash usuli yordamida (3.3.11) tenglamaning ν n+1 (x, λ) yechimi uchun ν n+1 (x, λ) = 2iλ x Z 0 ω(x, t, λ)e iλt u 0 n+1 (t)dt = = 2iλ x Z 0 ω(x, x − t, λ)e iλ(x−t) u 0 n+1 (x − t)dt tasvirni olamiz. Bundan u n+1 (x, λ) = 2iλ x Z 0 ω(x, x − t, λ)e −iλt u 0 n+1 (x − t)dt integral tenglama kelib chiqadi. Ushbu ω(λ, t) = ω(x, x − t, λ) funksiya quyidagi ω 00 tt − q(x − t)ω + λ 2 ω = 0 tenglamani qanoatlantirgani uchun, uni ω(λ, t) ≡ ω(x, x − t, λ) = sin λt λ + t Z 0 K(x, t, ξ) sin λξ λ dξ ko‘rinishda tasvirlash mumkin [186]. Bu yerda x parametr vazifasini bajaradi. Shuning uchun u n+1 (x, λ) = 2i x Z 0 sin λt + t Z 0 K(x, t, ξ) sin λξdξ e −iλt u 0 n+1 (x − t)dt = = u n+1 (x) + x Z 0 K n+1 (x, t)e −ωλt dt. (3.3.13) 154 Bunda K n+1 (x, t) = −u 0 n+1 (x − t) + 2 x Z t ξ − 2t |ξ − 2t| K(x, ξ, |ξ − t|)u 0 n+1 (x − ξ)dξ. Ikkinchi tomondan (3.3.11)+(3.3.11‘) Koshi masalasi uchun quyidagi integral tenglamani keltirib chiqarish mumkin: v n+1 (x, λ) = x Z 0 sin λ(x − t) λ © 2iλe iλt u 0 n+1 (t) + q(t)v n+1 (t, λ) ª dt. Bunga ko‘ra u n+1 (x, λ) = x Z 0 n 1 − e −2iλ(x−t) o½ u 0 n+1 (t) + 1 2iλ q(t)u n+1 (t, λ) ¾ dt. (3.3.14) Oxirgi tenglikning o‘ng tomoniga u n+1 (t, λ) uchun olingan (3.3.13) tasvirni qo‘ysak u n+1 (t, λ) = x Z 0 n 1 − e −2iλ(x−t) o½ u 0 n+1 (t) + 1 2iλ q(t)u n+1 (t) ¾ dt+ + 1 2iλ x Z 0 n 1 − e −2iλ(x−t) o q(t) t Z 0 K n+1 (t, ξ)e −2iλξ dξdt formula kelib chiqadi. Bu tenglikni soddalashtirish mumkin: u n+1 (x, λ) = u n+1 (x) + 1 2iλ x Z 0 q(t)u n+1 (t)dt− − x Z 0 e −2iλξ u 0 n+1 (x − ξ)dξ + 1 2iλ x Z 0 K (0) n+1 (x, ξ)e −2iλξ dξ . (3.3.15) Bu yerda K (0) n+1 (x, ξ) = q(x − ξ)u n+1 (x − ξ) − x Z ξ q(t)K n+1 (t, ξ)dt+ + x Z x−ξ q(t)K n+1 (t, ξ − x + t)dt. 155 (3.3.14) tenglikning ikkala tarafini x o‘zgaruvchi bo‘yicha differensiallab, u 0 n+1 (x, λ) = 2iλ x Z 0 e −2iλ(x−t) u 0 n+1 (t)dt + 1 2iλ x Z 0 e −2iλ(x−t) q(t)u n+1 (t, λ)dt tenglikni topamiz. Agar (3.3.15) tenglikni e’tiborga olsak, u holda u 0 n+1 (x, λ) = 2iλ x Z 0 u 0 n+1 (x − ξ)e −2iλξ dξ + x Z 0 K (1) n+1 (x, ξ)e −2iλξ dξ (3.3.16) tenglik hosil bo‘ladi. Bunda K (1) n+1 (x, ξ) = K (0) n+1 (x, ξ) + x Z ξ q(t)K n+1 (t, ξ)e −2iλξ dt. Endi (3.3.15) va (3.3.16) tengliklarni quyidagi ko‘rinishda yozib olamiz: u n+1 (x, λ) = u n+1 (x) + 1 2iλ x Z 0 q(t)u n+1 (t)dt− − x Z 0 ½ u 0 n+1 (x − ξ) + 1 2iλ K (0) n+1 (x, ξ) ¾ e −2iλξ dξ, (3.3.17) u 0 n+1 (x, λ) = 2iλ x Z 0 ½ u 0 n+1 (x − ξ) + 1 2iλ K (1) n+1 (x, ξ) ¾ e −2iλξ dξ. (3.3.18) Bu yerda K (0) n+1 (x, ξ), K (1) n+1 (x, ξ), u (0) n+1 (x − ξ) funksiyalar x ∈ [0, π] ning har bir tayinlangan qiymatida ξ o‘zgaruvchiga nisbatan kvadrati bilan integrallanu- vchidir. Quyidagi σ(x, λ) = d dx ln · 1 + u 1 (x) 2iλ + . . . + u n (x) (2iλ) n + u n+1 (x, λ) (2iλ) n+1 ¸ (3.3.19) belgilashdan foydalanib, (3.3.5) yechimni y(x, λ) = exp iλx + x Z 0 σ(t, λ)dt (3.3.20) ko‘rinishda ifodalaymiz. Bundan y 0 (x, λ) = {iλ + σ(x, λ)}y(x, λ), (3.3.19 0 ) 156 y 00 (x, λ) = n σ 0 (x, λ) + [iλ + σ(x, λ)] 2 o y(x, λ) tengliklarni topib, ularni (3.3.1) tenglamaga qo‘ysak, σ (x, λ) uchun birinchi tart- ibli nochiziqli differensial tenglamani keltirib chiqaramiz: σ 0 (x, λ) + 2iλσ (x, λ) + σ 2 (x, λ) − q (x) = 0. (3.3.20 0 ) Hisoblashlarni soddalashtirish maqsadida quyidagi belgilashlarni kiritamiz: P n (x, λ) = 1 + u 1 (x) 2iλ + .... + u n (x) (2iλ) n , Q n (x, λ) = P n (x, λ) + u n+1 (x, λ) (2iλ) n+1 . (3.3.21) Natijada (3.3.5) va (3.3.19) formulalar y(x, λ) = Q n (x, λ)e iλx , σ(x, λ) = P 0 n (x, λ) P n (x, λ) + u 0 n+1 (x, λ)P n (x, λ) − u n+1 (x, λ)P 0 n (x, λ) (2iλ) n+1 P n (x, λ)Q n (x, λ) ko‘rinishga keladi. Ushbu P 0 n (x, λ)[P n (x, λ)] −1 funksiya λ tekisligining cheksiz uzoqlashgan nuqtasi atrofida (2iλ) −1 ning darajalari bo‘yicha qatorga yoyiladi. Bu qatorning birinchi n ta hadini ajratib, P 0 n (x, λ) P n (x, λ) = n X k=1 σ k (x) (2iλ) + 1 (2iλ) n ∞ X k=1 ϕ k (x) (2iλ) k (3.3.22) yoyilmani hosil qilamiz. Bundan foydalanib, σ(x, λ) uchun σ(x, λ) = n X k=1 σ k (x) (2iλ) k + σ n (x, λ) (2iλ) n (3.3.23) yoyilmani topamiz. Bunda σ n (x, λ) = ∞ X k=1 ϕ k (x) (2iλ) k + u 0 n+1 (x, λ)P n (x, λ) − u n+1 (x, λ)P 0 n (x, λ) (2iλ) n+1 P n (x, λ)Q n (x, λ) . (3.3.24) Ushbu u 1 (0) = u 2 (0) = ... = u n (0) = u 0 n+1 (0, λ) = 0 munosabatlardan foydalanib, P 0 n (0, λ) P n (0, λ) = ∞ X k=1 u 0 k (0) (2iλ) k = n X k=1 σ k (0) (2iλ) k + 1 (2iλ) n ∞ X k=1 ϕ k (0) (2iλ) k va u 0 k (0) = σ k (0), k = 1, 2, ..., n, ϕ k (0) = 0, k = 1, 2, ..., σ(0, λ) = 0 tengliklarni topamiz. 157 Endi (3.3.15), (3.3.16) formulalarga va (3.3.11) tenglamaga Riman-Lebeg lem- masini qo‘llab, u n+1 (x, λ) − u n+1 (x) = o(1), u 0 n+1 (x, λ) = o(λ), (3.3.25) (2iλ) −1 u 00 n+1 (x, λ) + u 0 n+1 (x, λ) − u 0 n+1 (x) = o(1) (3.3.26) ekanligini topamiz. Ushbu σ(x, λ) = o(1), σ 0 (x, λ) = o(λ) baholarni e’tiborga olib, (3.3.23) tenglikning o‘ng tomonini (3.3.20) nochiziqli tenglamaga qo‘yib, σ 1 (x) = q(x), σ 0 k (x) + σ k+1 (x) + k−1 X j=1 σ k−j (x)σ j (x) = 0, k = 1, n va σ 0 n (x, λ) + 2iλσ n (x, λ) + σ 0 n (x) + n−1 X j=1 σ n−j (x)σ j (x) = = − n X p=1 n X j=p σ n+p−j (x)σ j (x) (2iλ) p − σ 2 n (x) (2iλ) n − 2σ n (x, λ) n X k=1 σ k (x) (2iλ) k (3.3.27) tengliklarni hosil qilamiz. Shuning uchun, σ k (x) funksiyalar quyidagi rekurrent formulalardan topiladi: Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling