Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
− ∆
2 (λ)] = R(λ) ∞ Y j=N +1 µ 1 − λ ξ j ¶ 2 , − c 0 (π, λ, t) = S(λ, t) ∞ Y j=N +1 µ 1 − λ ξ j ¶ , s(π, λ) = P (λ) ∞ Y j=N +1 µ 1 − λ ξ j ¶ , s(π, λ, t) = P (λ, t) ∞ Y j=N +1 µ 1 − λ ξ j ¶ , (2.5.25) 130 1 2 [s 0 (π, λ, t) − c(π, λ, t)] = Q(λ, t) ∞ Y j=N +1 µ 1 − λ ξ j ¶ tengliklarni yozishimiz mumkin. Bu yerda Q(λ, t) - darajasi N dan oshmaydi- gan ko‘phad. (2.5.25) munosabatlardan foydalanib, Floke yechimining (2.5.13) ko‘rinishini ushbu ψ ± (t, λ) = s P (λ, t) P (λ) exp ∓i t Z 0 R(λ) P (λ, τ ) dτ (2.5.26) shaklda yozishimiz mumkin. Bunda P (λ, t) = N Q j=1 (λ − ξ j (t)), P (λ) = N Q j=1 (λ − ξ j ), R(λ) = 2N Q j=1 (λ − λ j ), S(λ, t) = N Q j=0 (λ − τ j (t)). (2.5.27) Demak, N-zonali potensial holida (2.5.4) siljigan argumentli Xill tenglamasining Veyl-Titchmarsh funksiyasi uchun m ± (λ, t) = Q(λ, t) P (λ, t) ∓ i p R(λ) P (λ, t) (2.5.28) formula o‘rinli bo‘lar ekan. Endi (2.5.25) tasvirlarni ushbu −s(π, λ, t)c 0 (π, λ, t) == 1 4 [4 − ∆ 2 (λ)] + 1 4 [s 0 (π, λ, t) − c(π, λ, t)] 2 ayniyatga qo‘yib P (λ, t)S(λ, t) − Q 2 (λ, t) = R(λ) (2.5.29) tenglikni hosil qilamiz 6-§. Xill operatori xos funksiyalarining kvadratlari uchun ayniyat Ushbu Ly ≡ −y 00 + q(x)y = λy, x ∈ R (2.6.1) Xill tenglamasini qaraylik. Bu yerda q(x) - haqiqiy, uzluksiz differensiallanuvchi, π davrli funksiya. Quyidagi ½ −y 00 + q(x)y = λy, x ∈ [0, π], y(0) = y(π), y 0 (0) = y 0 (π) (2.6.2) 131 davriy va ½ −y 00 + q(x)y = λy, x ∈ [0, π], y(0) = −y(π), y 0 (0) = −y 0 (π) (2.6.3) yarimdavriy chegaraviy masalalarning xos qiymatlarini mos ravishda λ 0 < λ 3 ≤ λ 4 < ... < λ 4n−1 ≤ λ 4n < ... va λ 1 ≤ λ 2 < λ 5 ≤ ... < λ 4n+1 ≤ λ 4n+2 < ... orqali belgilaymiz. (2.6.2) davriy chegaraviy masalaning ortonormallangan xos funksiyalarini y 0 (x), y 3 (x), y 4 (x), ..., y 4n−1 (x), y 4n (x), ... orqali, (2.6.3) yarimdavriy chegaraviy masalaning ortonormallangan xos funksiyalarini esa y 1 (x), y 2 (x), y 5 (x), ..., y 4n+1 (x), y 4n+2 (x), ... orqali belgilaymiz. Agar biz ortonormallangan xos funksiyalar kvadratlaridan tuzilgan ushbu ∞ X k=0 y 2 2k (x) funksional qatorni qarasak, u shubhasiz uzoqlashuvchidir. Endi biz “Ixtiyoriy haqiqiy, uzluksiz, π davrli q(x) funksiya uchun ushbu ∞ X k=0 a k y 2 2k (x) = 1 ayniyatni qanoatlantiruvchi a k , k ≥ 0 sonlar mavjudmi?” degan savolga javob beramiz. Bu savolga ilk bor X.P.Makkin, E.Trubovis [195], P.Deyft, E.Trubovislarning [83] ilmiy ishlarida javob berilgan. Bu paragrafda yuqorida- gi ayniyatning sodda isbotini keltiramiz. (2.6.1) differensial tenglamaning c(0, λ) = 1, c 0 (0, λ) = 0 va s(0, λ) = 0, s 0 (0, λ) = 1 boshlang‘ich shartlarni qanoatlantiruvchi yechimlarini mos ravishda c(x, λ) va s(x, λ) lar orqali belgilaymiz. Ushbu −y 00 + q(x + t)y = λy, x ∈ R, t ∈ R (2.6.4) siljigan argumentli Xill tenglamasining c(0, λ, t) = 1, c 0 (0, λ, t) = 0 va s(0, λ, t) = 0, s 0 (0, λ, t) = 1 boshlang‘ich shartlarni qanoatlantiruvchi yechimlarini c(x, λ, t) va s(x, λ, t) orqali belgilaymiz. 132 Lemma 2.6.1. λ n - davriy yoki yarimdavriy chegaraviy masalaning xos qiy- mati bo‘lib, y n (x) unga mos keluvchi normallangan xos funksiya bo‘lsin. U holda quyidagi tengliklar o‘rinli: s(π, λ n , t) = −∆ 0 (λ n )y 2 n (t), n ≥ 0, (2.6.5) c 0 (π, λ n , t) = ∆ 0 (λ n )y 0 n 2 (t), n ≥ 0. (2.6.6) Isbot. (2.5.9) ayniyatni hisobga olib, ushbu ∆ 0 (λ) = π Z 0 {c 0 (π, λ)s 2 (t, λ) + [c(π, λ) − s 0 (π, λ)]c(t, λ)s(t, λ) − s(π, λ)c 2 (t, λ)} dt formulani quyidagi ko‘rinishda yozib olamiz ∆ 0 (λ) = −s(π, λ) π Z 0 ψ + (t, λ)ψ − (t, λ) dt. (2.6.7) Agar λ n xos qiymat karrali bo‘lsa, u holda (2.6.5) va (2.6.6) munosabatlarn- ing bajarilishi ravshan. Shuning uchun λ n oddiy xos qiymat bo‘lgan holni ko‘rib chiqamiz. Floke yechimlarining xossalariga asosan ushbu ψ + (t, λ n ) = ψ − (t, λ n ), y n (t) = 1 α n ψ ± (t, λ n ), α 2 n = π Z 0 ψ 2 ± (t, λ n )dt tengliklar bajariladi. Bunga ko‘ra (2.6.7) tenglikdan ∆ 0 (λ n ) = −s(π, λ n )α 2 n (2.6.8) tenglik kelib chiqadi. Agar (2.5.9) va (2.5.10) ayniyatlarda λ = λ n desak, hamda ψ ± (t, λ n ) = α n y n (t) tenglikni e’tiborga olsak, ushbu s(π, λ n )α 2 n y 2 n (t) = s(π, λ n , t), (2.6.9) s(π, λ n )α 2 n y 0 n 2 (t) = −c 0 (π, λ n , t) (2.6.10) tengliklarni hosil qilamiz. Bu yerda (2.6.8) formulani qo‘llasak, (2.6.5) va (2.6.6) munosabatlar kelib chiqadi. Teorema 2.6.1. (2.6.2) davriy va (2.6.3) yarimdavriy chegaraviy masalalarn- ing y 2k (x), k ≥ 0 ortonormallangan xos funksiyalari uchun ushbu ∞ X k=0 a 2k y 2 2k (t) = 1, (2.6.11) 133 ∞ X k=0 a 2k y 0 2k 2 (t) = 1 2 [−q(t) + c + λ 0 ] (2.6.12) ayniyatlar o‘rinli bo‘ladi. Bu yerda a 2k = ∆ 0 (λ 2k ) f 0 (λ 2k ) , f (λ) = π(λ 0 − λ) ∞ Y k=1 λ 2k − λ k 2 , c = ∞ X k=1 (λ 2k − λ 2k−1 ). (2.6.13) Isbot. Quyidagi F (λ) = s(π, λ, t) f (λ) , G(λ) = c 0 (π, λ, t) f (λ) − 1 (2.6.14) funksiyalarni qaraylik. Bu funksiyalarni yetarli katta radiusli aylana konturi bo‘yicha integrallaymiz. U holda Koshi teoremasiga asosan, ushbu Z |λ|= ( N + 1 2 ) 2 F (λ)dλ = 2πi N X k=0 res λ=λ 2k F (λ), (2.6.15) Z |λ|= ( N + 1 2 ) 2 G(λ)dλ = 2πi N X k=0 res λ=λ 2k G(λ) (2.6.16) tengliklarning bajarilishi ravshan. Avvalo, qoldiqlarni hisoblaymiz: res λ=λ 2k F (λ) = lim λ→λ 2k (λ − λ 2k )F (λ) = s(π, λ 2k , t) f 0 (λ 2k ) = − ∆ 0 (λ 2k ) f 0 (λ 2k ) y 2 2k (t), (2.6.17) res λ=λ 2k G(λ) = lim λ→λ 2k (λ − λ 2k )G(λ) = c 0 (π, λ 2k , t) f 0 (λ 2k ) = ∆ 0 (λ 2k ) f 0 (λ 2k ) y 0 2k 2 (t). (2.6.18) Endi (2.6.15) va (2.6.16) tengliklarda N → ∞ da limitga o‘tish maqsadida bu tengliklar chap tomonidagi integrallarda λ = Re iϕ , 0 ≤ ϕ ≤ 2π almashtirish bajaramiz, bunda R = ¡ N + 1 2 ¢ 2 . Natijada, ushbu I N = Z |λ|= ( N + 1 2 ) 2 F (λ)dλ = i 2π Z 0 F (Re iϕ )Re iϕ dϕ, (2.6.19) J N = Z |λ|= ( N + 1 2 ) 2 G(λ)dλ = i 2π Z 0 G(Re iϕ )Re iϕ dϕ (2.6.20) integrallar kelib chiqadi. 134 Quyidagi [328, 83-92 bet] s(π, λ, t) = π ∞ Y k=1 ξ k (t) − λ k 2 , c 0 (π, λ, t) = π(η 0 (t) − λ) ∞ Y k=1 η k (t) − λ k 2 yoyilmalardan foydalanib, F (λ) va G(λ) funksiyalarning asimptotikalarini o‘rganamiz: F (λ) = s(π, λ, t) f (λ) = 1 λ 0 − λ v u u t ∞ Y k=1 λ − λ 2k−1 λ − λ 2k v u u t ∞ Y k=1 λ − ξ k (t) λ − λ 2k−1 · λ − ξ k (t) λ − λ 2k = = 1 λ 0 − λ v u u texp ( ∞ X k=1 ln µ 1 + λ 2k − λ 2k−1 λ − λ 2k ¶) × × v u u texp ( ∞ X k=−1 ln · 1 + λ 2k−1 − ξ k (t) λ − λ 2k−1 + λ 2k − ξ k (t) λ − λ 2k + (λ 2k−1 − ξ k (t))(λ 2k − ξ k (t)) (λ − λ 2k−1 )(λ − λ 2k ) ¸) = = 1 λ 0 − λ v u u texp ( 1 λ ∞ X k=1 (λ 2k − λ 2k−1 ) + O µ 1 λ 2 ¶) × × v u u texp ( 1 λ ∞ X k=1 (λ 2k−1 + λ 2k − 2ξ k (t)) + O µ 1 λ 2 ¶) , |λ| → ∞. (2.6.21) c 0 (π, λ, t) f (λ) = η 0 (t) − λ λ 0 − λ v u u t ∞ Y k=1 λ − λ 2k−1 λ − λ 2k v u u t ∞ Y k=1 λ − η k (t) λ − λ 2k−1 · λ − η k (t) λ − λ 2k = = η 0 (t) − λ λ 0 − λ v u u texp ( ∞ X k=1 ln µ 1 + λ 2k − λ 2k−1 λ − λ 2k ¶) × × v u u texp ( ∞ X k=−1 ln · 1 + λ 2k−1 − η k (t) λ − λ 2k−1 + λ 2k − η k (t) λ − λ 2k + (λ 2k−1 − η k (t))(λ 2k − η k (t)) (λ − λ 2k−1 )(λ − λ 2k ) ¸) = = 1 − η 0 (t) λ 1 − λ 0 λ v u u texp ( 1 λ ∞ X k=1 (λ 2k − λ 2k−1 ) + O µ 1 λ 2 ¶) × × v u u texp ( 1 λ ∞ X k=1 (λ 2k−1 + λ 2k − 2η k (t)) + O µ 1 λ 2 ¶) , |λ| → ∞. (2.6.22) 135 Ushbu [IV bobning 4-§ga qarang] q(t) = λ 0 + ∞ X k=1 (λ 2k−1 + λ 2k − 2ξ k (t)), −q(t) = λ 0 − 2η 0 (t) + ∞ X k=1 (λ 2k−1 + λ 2k − 2η k (t)) izlar formulalarini hamda quyidagi belgilashni c = ∞ X k=1 (λ 2k − λ 2k−1 ) hisobga olsak, (2.6.21) va (2.6.22) tengliklardan F (λ) = − 1 λ · ½ 1 + λ 0 λ + O µ 1 λ 2 ¶¾ · ½ 1 + 1 2λ c + O µ 1 λ 2 ¶¾ × × ½ 1 + 1 2λ [q(t) − λ 0 ] + O µ 1 λ 2 ¶¾ = = − 1 λ · ½ 1 + 1 2λ [q(t) + c + λ 0 ] + O µ 1 λ 2 ¶¾ , |λ| → ∞, (2.6.23) G(λ) = ½ 1 + λ 0 − η 0 (t) λ + O µ 1 λ 2 ¶¾ · ½ 1 + 1 2λ c + O µ 1 λ 2 ¶¾ × × ½ 1 + 1 2λ [2η 0 (t) − q(t) − λ 0 ] + O µ 1 λ 2 ¶¾ − 1 = = 1 2λ [−q(t) + c + λ 0 ] + O µ 1 λ 2 ¶ , |λ| → ∞, (2.6.24) asimptotik formulalar kelib chiqadi. Agar (2.6.23) va (2.6.24) baholashlarni ino- batga olsak, (2.6.19) va (2.6.20) integrallar uchun ushbu I N = −i 2π Z 0 ½ 1 + O µ 1 R ¶¾ dϕ = −2πi + O µ 1 N 2 ¶ , N → ∞, J N = i 2π Z 0 ½ 1 2 [−q(t) + c + λ 0 ] + O µ 1 R ¶¾ dϕ = [−q(t) + c + λ 0 ]πi + O µ 1 N 2 ¶ , N → ∞ asimptotikalar hosil bo‘ladi. Bu asimptotikalarni hisobga olib, (2.6.15) va (2.6.16) tengliklarda limitga o‘tsak, − ∞ X k=0 res λ=λ 2k F (λ) = 1, 136 ∞ X k=0 res λ=λ 2k G(λ) = 1 2 [−q(t) + c + λ 0 ] kelib chiqadi. (2.6.17) va (2.6.18) ifodalarni bu ayniyatlarga qo‘yib, ∞ X k=0 ∆ 0 (λ 2k ) f 0 (λ 2k ) y 2 2k (t) = 1, ∞ X k=0 ∆ 0 (λ 2k ) f 0 (λ 2k ) y 0 2k 2 (t) = 1 2 [−q(t) + c + λ 0 ] ekanligini topamiz. Shunday qilib, (2.6.11) va (2.6.12) ayniyatlar isbotlandi. Teorema 2.6.1 isbotining ikkinchi usuli. Bu usul Mittag-Leffler teore- masiga asoslanadi. Avvalo, ushbu F (λ) = s(π, λ, t) f (λ) , G(λ) = c 0 (π, λ, t) f (λ) Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling