Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
λ
2n−1 , λ 2n ] lakunani diametr qilib aylana chizamiz, bu aylananing markazi lakuna o‘rtasida, ya’ni λ 2n−1 +λ 2n 2 nuqtada, radiusi esa lakuna uzunligining yarmiga teng bo‘ladi, ya’ni λ 2n −λ 2n−1 2 ga teng bo‘ladi. Agar aylanadagi nuqtani λ = ξ n + iη n deb olsak, bu aylananing tenglamasi µ ξ n − λ 2n−1 + λ 2n 2 ¶ 2 + η 2 n = µ λ 2n − λ 2n−1 2 ¶ 2 , η 2 n = (λ 2n − ξ n )(ξ n − λ 2n−1 ) ko‘rinishda bo‘ladi. Agar aylana markazidan aylananing λ = ξ n + iη n nuqtasiga o‘tkazilgan radius vektor va haqiqiy o‘qning manfiy yo‘nalishi orasidagi burchakni 2ϕ n deb olsak, u holda qaralayotgan aylananing parametrik tenglamasi ξ n + iη n = λ 2n−1 + λ 2n 2 + λ 2n − λ 2n−1 2 e i(π−2ϕ n ) , ya’ni ξ n = λ 2n−1 + λ 2n 2 − λ 2n − λ 2n−1 2 cos 2ϕ n , η n = λ 2n − λ 2n−1 2 sin 2ϕ n bo‘ladi. Bularga ko‘ra ξ n = λ 2n−1 + (λ 2n − λ 2n−1 ) sin 2 ϕ n va sign(η n ) = sign(sin 2ϕ n ) bo‘ladi. Xususan, η n = sign (sin 2ϕ n ) p (λ 2n − ξ n )(ξ n − λ 2n−1 ). Agar yuqoridagi aylananing λ = ξ n + iη n nuqtasi bir yo‘nalishda harakat qilaversa, uning haqiqiy o‘qdagi proeksiyasi, ya’ni ξ n nuqta aylananing diametri bo‘yicha borib kelib turadi. Agar diametrni ikki qirg‘oqli deb qarasak, ξ n nuqta borishin bir qirg‘oq bo‘yicha, kelishin boshqa qirg‘oq bo‘yicha harakat qiladi. Bu izoh Dubrovin-Trubovis sistemasini soddalashtirishda muhim o‘rin egallaydi. 185 Endi spektral parametrlarning harakat tenglamasini, ya’ni Dubrovin- Trubovis differentsial tenglamalar sistemasini keltirib chiqaramiz. Birinchi usul: Aniqlanishiga ko‘ra ξ n (t), n ≥ 1 spektral parametr ushbu ϕ(π, λ, t) = 0 tenglamaning ildizlari bo‘ladi. ϕ(π, λ, t) butun funksiya bo‘lgani uchun ushbu ϕ(π, λ, t) = π ∞ Y k=1 ξ k (t) − λ k (4.2.6) yoyilma o‘rinli. Bundan foydalanib quyidagi ˙ ϕ(π, λ, t)| λ=ξ n (t) = π · ˙ξ n (t) n 2 · ∞ Y k=1, k6=n ξ k (t) − ξ n (t) k 2 . tenglikni topamiz. Ushbu ∆ 2 (λ) − 4 = [θ(π, λ, t) − ϕ 0 (π, λ, t)] 2 + 4θ 0 (π, λ, t)ϕ(π, λ, t) (4.2.7) ayniyatdan esa quyidagi [ϕ 0 (π, λ, t) − θ(π, λ, t)]| λ=ξ n (t) = σ n (t) p ∆ 2 (ξ n (t)) − 4 tenglik kelib chiqadi. Yuqoridagi (4.2.3) ayniyatga asosan π · ˙ξ n (t) n 2 · ∞ Y k=1, k6=n ξ k (t) − ξ n (t) k 2 = σ n (t) p ∆ 2 (ξ n (t)) − 4, munosabatni topamiz. Bundan ˙ξ n (t) = n 2 σ n (t) p ∆ 2 (ξ n (t)) − 4 π · ∞ Q k=1, k6=n ξ k (t)−ξ n (t) k 2 , n = 1, 2, ... . (4.2.8) differensial tenglamalar sistemasi kelib chiqadi. Bu differentsial tenglamalar sis- temasi lakunalar soni cheklita bo‘lgan holda, ya’ni chekli zonali kvazidavriy potentsiallar holida 1975 yilda B.A.Dubrovin, davriy potentsiallar holida esa 1977 yilda E.Trubovis va cheksiz zonali deyarli davriy potensiallar uchun B.M.Levitan tomonidan olingan. Hozirgi kunda bu differensial tenglamalar sis- temasiga Dubrovin-Trubovis sistemasi deyiladi. Bu sistemada no’malumlar soni ham, tenglamalar soni ham cheksiz ko‘p. Dubrovin-Trubovis sistemasining o‘ng tomonlariga t parametr oshkor ravishda kirmaganligi tufayli u muxtor sistemadir. Keyinchalik biz Dubrovin-Trubovis sistemasini keltirib chiqarishning boshqacha usulini ham o‘rganamiz. 186 Ikkinchi usul. Dastlab quyidagi ½ L(t)y ≡ −y 00 + q(x + t)y = λy y(0) = 0, y(π) = 0 (4.2.9) Dirixle chegaraviy masalani ko‘rib chiqamiz. ξ n (t), n ≥ 1 sonlar bu chegaraviy masalaning xos qiymatlaridan iborat ekanligi ma’lum, ularga mos keluvchi nor- mallangan xos funksiyalarni y n = y n (x, t) orqali belgilaymiz. U holda ushbu L(t)y n = ξ n (t)y n , (L(t)y n , y n ) = ξ n (t), (L(t)y n , y n ) • = ˙ξ n (t), ((L(t)y n ) • , y n ) + (L(t)y n , ˙y n (t)) = ˙ξ n (t) tengliklarning bajarilishini tekshirish qiyinchilik tug‘dirmaydi. Quyidagi tenglik- dan (L(t)y n ) • = (−y 00 n (x, t) + q(x + t)y n (x, t)) • = − ˙y 00 n + q(x + t)y n + q(x + t) ˙y n = = L ˙y n + q 0 (x + t)y n ushbu ˙ξ n (t) = (L(t) ˙y n , y n ) + (q 0 (x + t)y n , y n ) + (L(t)y n , ˙y n ) (4.2.10) ayniyat kelib chiqadi. L(t) operatorning simmetrikligini ishlatib (4.2.10) tenglikni quyidagicha yozamiz: ˙ξ n (t) = ( ˙y n , L(t)y n ) + (q 0 (x + t)y n , y n ) + (L(t)y n , ˙y n ) (4.2.11) Bunda, ξ n (t) lar L(t) operatorning xos qiymatlari ekanligini e’tiborga olsak, ˙ξ n (t) = ξ n (t)( ˙y n , y n ) + (q 0 (x + t)y n , y n ) + ξ n (t)(y n , ˙y n ) (4.2.12) hosil bo‘ladi. (y n , y n ) = 1 tenglikdan esa ( ˙y n , y n ) = 0 kelib chiqadi. Bunga ko‘ra (4.2.12) tenglikni quyidagi ko‘rinishda yozish mumkin: ˙ξ n (t) = (q 0 (x + t)y n , y n ). (4.2.13) L 2 (0, π) fazodagi skalyar ko‘paytmaning ta’rifidan foydalanib, (4.2.13) tenglikni ushbu ˙ξ n (t) = π Z 0 y 2 n (x, t)q 0 (x + t)dx (4.2.14) ko‘rinishda yozamiz. Oxirgi tenglikning o‘ng tomonini bo‘laklab integrallaymiz: ˙ξ n (t) = π Z 0 y 2 n (x, t)d(q(x + t)) = y 2 n (x, t)q(x + t) ¯ ¯ x=π x=0 187 −2 π Z 0 y n (x, t)y 0 n (x, t)q(x + t)dt = −2 π Z 0 y 0 n (x, t)[q(x + t)y n ]dx. (4.2.15) Ushbu y n = y n (x, t) funksiya (4.2.9) chegaraviy masalaning xos funksiyasi bo‘lgani uchun −y 00 n + q(x + t)y n = ξ n (t)y n , ya’ni q(x + t)y n = y 00 n + ξ n (t)y n (4.2.16) bo‘ladi. Bu ifodani (4.2.15) tenglikga qo‘ysak, quyidagi ˙ξ n (t) = −2 π Z 0 y 0 n [y 00 n + ξ n (t)y n ]dx = −2 π Z 0 y 0 n · y 00 n dx − 2ξ n (t) π Z 0 y 0 n y n dx = = − π Z 0 (y 0 n 2 ) 0 dx−ξ n (t) π Z 0 (y 2 n ) 0 dx = = y 0 n 2 (0, t)−y 0 n 2 (π, t) = 1 α 2 n (t) s 02 (0, ξ n (t),t)− − 1 α n (t) s 02 (π, ξ n (t), t) = 1 − s 02 (π, ξ n (t), t) α n (t) . (4.2.17) munosabat hosil bo‘ladi. Bu yerda y n (x, t) = 1 α n (t) s(x, ξ n (t), t) tenglikdan foydalanildi. O‘z navbatida α n (t)- normallovchi o‘zgarmaslar uchun α 2 n (t) = π Z 0 s 2 (x, ξ n (t),t)dx = ˙s 0 (π, ξ n (t), t) ∂ s(π, λ, t) ∂λ ¯ ¯ ¯ ¯ λ=ξ n (t) (4.2.18) formula o‘rinli. Bu formulani (4.2.17) tenglikka qo‘ysak ˙ξ n (t) = 1 s 0 (π, ξ n (t),t) − s 0 (π, ξ n (t), t) s λ (π, ξ n (t), t) (4.2.19) ifoda hosil bo‘ladi. Ushbu ∆(ξ n (t)) = s 0 (π, t, ξ n (t)) + 1 s 0 (π, t, ξ n (t)) , ∆ 2 (ξ n (t)) − 4 = · s 0 (π, ξ n (t),t) − 1 s 0 (π, ξ n (t), t) ¸ 2 , 188 tengliklarga asosan s 0 (π, t, ξ n (t)) − 1 s 0 (π, t, ξ n (t)) = σ n (t) p ∆ 2 (ξ n (t)) − 4 (4.2.20) topamiz. Bu yerda σ n (t) = sign ½ s 0 (π, ξ n (t), t) − 1 s 0 (π, ξ n (t), t) ¾ . (4.2.21) Agar ushbu s(π, λ, t) = π ∞ Y k=1 ξ k (t) − λ k 2 ∂s(π, λ, t) ∂λ = π ∞ X m=1 (− 1 m 2 ) ∞ Y k=1 k6=m ξ k (t) − λ k 2 ∂s(π, ξ k (t), t) ∂λ = − π n 2 ∞ Y k=1 k6=n ξ k (t) − ξ n (t) k 2 yoyilmalardan foydalansak, ˙ξ n (t) = σ n (t) p ∆ 2 (ξ n (t)) − 4 π n 2 ∞ Q k=1 k6=n ξ k (t)−ξ n (t) k 2 (4.2.22) kelib chiqadi. Quyidagi ∆ 2 (λ) − 4 = 4π 2 (λ 0 − λ) ∞ Y k=1 (λ 2k−1 − λ)(λ 2k − λ) k 4 (4.2.23) formuladan foydalanib, (4.2.23) tenglikni ushbu ˙ξ n (t) = 2n 2 σ n (t) s (λ 0 − ξ n (t)) ∞ Q k=1 (λ 2k−1 −ξ n (t))(λ 2k −ξ n (t)) k 4 ∞ Q k=1 k6=n ξ k (t)−ξ n (t) k 2 , (4.2.24) ko‘rinishda yozish mumkin. Keyinchalik sign ∞ Y k=1 k6=n ξ k (t) − ξ n (t) k 2 = (−1) n−1 189 tenglikni qo‘llab (4.2.24) tenglamani qulay shaklga keltiramiz: ˙ξ n (t) = 2(−1) n−1 σ n (t) p (ξ n (t) − λ 2n−1 )(λ 2n − ξ n (t))× × v u u t(ξ n (t) − λ 0 ) ∞ Y k=1 k6=n (λ 2k−1 − ξ n (t))(λ 2k − ξ n (t)) (ξ k (t) − ξ n (t)) 2 , n = 1, 2 , ... (4.2.25) Teskari masalani yechish jarayonida Dubrovin-Trubovis tenglamalar sistemasi ushbu ξ n (t)| t=0 = ξ n (0) , n = 1, 2, 3, ... σ n (t)| t=0 = σ n (0) , n = 1, 2, 3, ... (4.2.26) boshlang‘ich shartlar bilan birga qaraladi. Bu yerda ξ n (0) = ξ n ∈ [λ 2n−1 , λ 2n ] , σ n (0) = σ n = ±1 , n = 1, 2, 3, ... berilgan (ma’lum) spektral parametrlar. Shu bilan birga σ n (t) = ±1 ishoraning qiymati, ξ n (t) o‘z lakunasining chetiga kelganida qarama-qarshisiga o‘zgartiriladi. 3-§. Dubrovin-Trubovis differentsial tenglamalar sistemasi uchun qo‘yilgan Koshi masalasi yechimining mavjudligi va yagonaligi Oldingi paragrafda keltirib chiqarilgan ushbu ˙ξ n = 2(−1) n−1 σ n (t) p (ξ n − λ 2n−1 )(λ 2n − ξ n )× × v u u t(ξ n − λ 0 ) ∞ Y k=1 k6=n (λ 2k−1 − ξ n )(λ 2k − ξ n ) (ξ k − ξ n ) 2 , n = 1, 2, ... (4.3.1) Dubrovin-Trubovis sistemasini quyidagi boshlang‘ich shartlar bilan birga ko‘rib chiqamiz: ξ n (t)| t=0 = ξ 0 n , σ n (t)| t=0 = σ 0 n , n = 1, 2, ... . (4.3.2) Bu yerda ξ 0 n ∈ [λ 2n−1 , λ 2n ] va σ 0 n = ±1, n = 1, 2, ... berilgan spektral parametr- lar. Shu bilan birga, σ n (t) = ±1 ishoraning qiymati ξ n (t) spektral parametr o‘z lakunasining chetiga kelganida qarama-qarshisiga o‘zgaradi. Bu paragrafda Dubrovin-Trubovis sistemasi uchun qo‘yilgan (4.3.1)+(4.3.2) Koshi masalasi yechimining mavjudligini va yagonaligini tekshirish bilan shug‘ullanamiz. Buning uchun avvalo, (4.3.1) tenglamalardagi σ n (t) = ±1 o‘zgaruvchan ishoralardan, shu bilan birga o‘zgarmas yechimlardan qutilish maqsadida ushbu ξ n (t) = λ 2n−1 + (λ 2n − λ 2n−1 ) sin 2 x n (t), n = 1, 2, ... (4.3.3) 190 almashtirishni bajaramiz. Bunga ko‘ra ushbu ˙ξ n (t) = (λ 2n − λ 2n−1 ) sin 2x n (t) · ˙x n (t), ξ n (t) − λ 2n−1 = (λ 2n − λ 2n−1 ) sin 2 x n (t), λ 2n − ξ n (t) = (λ 2n − λ 2n−1 ) cos 2 x n (t), p (ξ n (t) − λ 2n−1 )( Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling