Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
λ
2n − ξ n (t)) = 1 2 (λ 2n − λ 2n−1 )|sin 2x n (t)|. tengliklarni topamiz. Bu ifodalarni (4.3.1) tenglamaga qo‘yib ˙x n (t) = (−1) n−1 σ n (t) · sign{sin x n (t) cos x n (t)} · h n (ξ), n = 1, 2, ... . (4.3.4) tenglikni hosil qilish mumkin. Bu yerda ushbu h n (ξ) = h n (ξ 1 , ξ 2 , ... ) = v u u t(ξ n − λ 0 ) ∞ Y k=1 k6=n (λ 2k−1 − ξ n )(λ 2k − ξ n ) (ξ k − ξ n ) 2 , n = 1, 2, ... belgilashni kiritdik. Agar biz ξ n (t) spektral parametr o‘z lakunasining chetiga kelganida σ n (t) ishora bilan birgalikda sin x n (t) cos x n (t) ifodaning ishorasi ham qarama- qarshisiga o‘zgarishini e’tiborga olsak, hamda boshlang‘ich shartlarni quyidagi tarzda tanlasak, x n (0) = x 0 n = arcsin s ξ 0 n − λ 2n−1 λ 2n − λ 2n−1 , n = 1, 2, ... , (4.3.5) u xolda σ n (t)sign{sin x n (t) cos x n (t)} = σ n (0) bo‘ladi. Buning natijasida, (4.3.4) tenglamalar soddaroq ko‘rinishda yoziladi: ˙x n (t) = (−1) n−1 σ n (0) · h n (ξ), n = 1, 2, ... . (4.3.6) Bu sistemaning o‘ng tomoniga (4.3.3) ifodalarni qo‘yadigan bo‘lsak, al- mashtirishni to‘liq bajargan bo‘lamiz: dx n (t) dt = H n (x 1 (t), x 2 (t), ...), n = 1, 2, ... . (4.3.7) Bu yerda H n (x 1 , x 2 , ...) = (−1) n−1 σ n (0)·h n (λ 1 +(λ 2 −λ 1 ) sin 2 x 1 , λ 3 +(λ 4 −λ 3 ) sin 2 x 2 , ...). Yuqoridagi (4.3.5)+(4.3.7) Koshi masalasini tekshirish maqsadida quyidagi Ba- nax fazosini kiritamiz: K = { x = (x 1 , x 2 , ...) : x n ∈ R 1 , kxk = ∞ X n=1 (λ 2n − λ 2n−1 )|x n | < ∞}. 191 Agar H(x) = (H 1 (x), H 2 (x), ...) belgilashni kiritib olsak, (4.3.7) Dubrovin- Trubovis tenglamalar sistemasi K Banax fazosida bitta tenglama sifatida yoziladi: dx dt = H(x). (4.3.8) Boshlang‘ich shartlarni quyidagi ko‘rinishda yozish mumkin x(t) ¯ ¯ t=0 = x 0 , x 0 ∈ K. (4.3.9) Ma’lumki, K Banax fazosidagi y 0 = F (y), y(0) = y 0 Koshi masalasining yechimi mavjud va yagona bo‘lishi uchun F (y) funksiya Lipshis shartini qanoat- lantirishi yetarli, ya’ni kF (x) − F (y)k ≤ constkx − yk , ∀ x, y ∈ K. Shuning uchun H(x) funksiya K Banax fazosida Lipshis shartini qanoatlantirishi- ni ko‘rsatamiz. Avvalo, lakunalar ketma-ketligi chekli nuqtada gavjumlashmasligidan ham- da ξ n ∈ [λ 2n−1 , λ 2n ], n = 1, 2, ... munosabatlardan foydalanib, ushbu inf k6=n |ξ n − ξ k | ≥ a > 0 tengsizlikni olamiz. Bu tengsizlikdan foydalanib, |h n (ξ)| va ¯ ¯ ¯ ∂h n (ξ) ∂ξ m ¯ ¯ ¯ funksiyalarni baholaymiz. Lemma 4.3.1. Ushbu C 1 |n| ≤ |h n (ξ)| ≤ C 2 |n|, n = 1, 2, ... (4.3.10) baholash o‘rinli. Bu yerda C 1 > 0 va C 2 > 0 o‘zgarmaslar n ga bog‘liq emas. Isbot. Ushbu C 0 1 · n 2 < |ξ n − λ 0 | < C 0 2 · n 2 (4.3.11) baholash o‘rinli bo‘lishi ravshan. Bu yerda C 0 1 > 0 va C 0 2 > 0 o‘zgarmaslar n ga bog‘liq emas. Quyidagi ketma-ketlikni qaraymiz P n = ∞ Y k=1 k6=n (λ 2k−1 − ξ n )(λ 2k − ξ n ) (ξ k − ξ n ) 2 = ∞ Y k=1 k6=n µ 1 + λ 2k−1 − ξ k ξ k − ξ n ¶ µ 1 + λ 2k − ξ k ξ k − ξ n ¶ va uni yuqoridan baholaymiz: |P n | = ∞ Y k=1 k6=n ¯ ¯ ¯ ¯1 + λ 2k−1 − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯1 + λ 2k − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ≤ ≤ ∞ Y k=1 k6=n µ 1 + ¯ ¯ ¯ ¯ λ 2k−1 − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ¶ µ 1 + ¯ ¯ ¯ ¯ λ 2k − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ¶ ≤ 192 ≤ ∞ Y k=1 k6=n µ 1 + λ 2k − λ 2k−1 a ¶ 2 ≤ ∞ Y k=1 µ 1 + λ 2k − λ 2k−1 a ¶ 2 = C 00 2 . (4.3.12) Bu yerdagi C 00 2 > 0 o‘zgarmas n ga bog‘liq emasligi ko‘rinib turibdi. Agar (4.3.11) va (4.3.12) baholashlarni o‘zaro ko‘paytirib, so‘ng kvadrat ildiz chiqarsak, |h n (ξ)| ≤ C 2 |n| tengsizlikka ega bo‘lamiz. Bu yerda C 2 = p C 0 2 C 00 2 . Endi |h n (ξ)| ni quyidan baholaymiz. Buning uchun ushbu M = ½ k ∈ N : λ 2k − λ 2k−1 a ≥ 1 ¾ indekslar to‘plamini kiritib olamiz. Bu to‘plamda cheklita element bo‘ladi. P n = A n · B n ko‘paytmadagi A n = ∞ Q k=1 k6=n λ 2k−1 −ξ n ξ k −ξ n va B n = ∞ Q k=1 k6=n λ 2k −ξ n ξ k −ξ n ko‘paytuvchilarni ko‘rib chiqamiz. A n ni quyidagi tarzda yozib olamiz A n = A n,1 · A n,2 · A n,3 . Bu yerda A n,1 = ∞ Y k=1,k6=n k / ∈M λ 2k−1 − ξ n ξ k − ξ n , A n,2 = n−1 Y k=1, k∈M λ 2k−1 − ξ n ξ k − ξ n , A n,3 = ∞ Y k=n+1, k∈M λ 2k−1 − ξ n ξ k − ξ n . Agar k 6= n bo‘lib, k / ∈ M bo‘lsa, u holda ¯ ¯ ¯ ¯ λ 2k−1 − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ≤ λ 2k − λ 2k−1 a < 1, − ¯ ¯ ¯ ¯ λ 2k−1 − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ≥ − λ 2k − λ 2k−1 a > −1, 1 − ¯ ¯ ¯ ¯ λ 2k−1 − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ≥ 1 − λ 2k − λ 2k−1 a > 0 bo‘lgani uchun |A n,1 | = ∞ Y k=1,k6=n k / ∈M ¯ ¯ ¯ ¯ λ 2k−1 − ξ n ξ k − ξ n ¯ ¯ ¯ ¯ = ∞ Y k=1,k6=n k / ∈M ¯ ¯ ¯ ¯1 + λ 2k−1 − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ≥ ∞ Y k=1,k6=n k / ∈M µ 1 − ¯ ¯ ¯ ¯ λ 2k−1 − ξ k ξ k − ξ n ¯ ¯ ¯ ¯ ¶ ≥ ≥ ∞ Y k=1,k6=n k / ∈M µ 1 − λ 2k − λ 2k−1 a ¶ > ∞ Y k=1, k / ∈M µ 1 − λ 2k − λ 2k−1 a ¶ = C 00 1 o‘rinli bo‘ladi. Agar 1 ≤ k ≤ n − 1 bo‘lib, k ∈ M bo‘lsa, u holda |A n,2 | = n−1 Y k=1, k∈M ¯ ¯ ¯ ¯ λ 2k−1 − ξ n ξ k − ξ n ¯ ¯ ¯ ¯ = n−1 Y k=1, k∈M ξ n − λ 2k−1 ξ n − ξ k = n−1 Y k=1, k∈M µ 1 + ξ k − λ 2k−1 ξ n − ξ k ¶ > 1. 193 Endi k ≥ n + 1 bo‘lib, k ∈ M bo‘lgan holni ko‘rib chiqamiz. ∆ = max k≥1 (λ 2k − λ 2k−1 ) belgilash kiritamiz va bu holni ikki qismga ajratamiz. 1-hol. k ≥ n + 1, k ∈ M bo‘lib, |ξ k − ξ n | ≤ 2∆ bo‘lsin. Bu holda ∞ Y k=n+1, k∈M ∗ ¯ ¯ ¯ ¯ λ 2k−1 − ξ n ξ k − ξ n ¯ ¯ ¯ ¯ > ∞ Y k=n+1, k∈M ∗ λ 2k−1 − λ 0 2k−1 2∆ ≥ ∞ Y k=1, k∈M λ 2k−1 − λ 0 2k−1 2∆ . Bu yerda λ 0 2k−1 son quyidagi shartlardan tanlanadi max{λ 2k−2 , λ 2k−1 − 2∆} < λ 0 2k−1 < λ 2k−1 . 2-hol. k ≥ n + 1, k ∈ M bo‘lib, |ξ k − ξ n | > 2∆ bo‘lsin. Bu holda ξ k − λ 2k−1 ξ k − ξ n < ξ k − λ 2k−1 2∆ < λ 2k − λ 2k−1 2∆ < 1 2 , − ξ k − λ 2k−1 ξ k − ξ n > − 1 2 , 1 − ξ k − λ 2k−1 ξ k − ξ n > 1 2 , λ 2k−1 − ξ n ξ k − ξ n > 1 2 bo‘lgani uchun ushbu ∞ Y k=n+1, k∈M ∗∗ ¯ ¯ ¯ ¯ λ 2k−1 − ξ n ξ k − ξ n ¯ ¯ ¯ ¯ > ∞ Y k=n+1, k∈M ∗∗ 1 2 > ∞ Y k=1, k∈M 1 2 baholash o‘rinli bo‘ladi. Demak, |A n,3 | = ∞ Y k=n+1, k∈M ¯ ¯ ¯ ¯ λ 2k−1 − ξ n ξ k − ξ n ¯ ¯ ¯ ¯ > ∞ Y k=1, k∈M λ 2k−1 − λ 0 2k−1 4∆ = C 000 1 . Olingan tengsizliklar natijasida ushbu |A n | = |A n,1 | · |A n,2 | · |A n,3 | > C 00 1 · 1 · C 000 1 = C 1,1 (4.3.13) baholashni olamiz. Xuddi shu tarzda quyidagi baholash olinadi: |B n | > C 1,2 . (4.3.14) Agar (4.3.11), (4.3.13) va (4.3.14) baholashlarni o‘zaro ko‘paytirib, so‘ng kvadrat ildiz chiqarsak, C 1 |n| ≤ |h n (ξ)| tengsizlikka ega bo‘lamiz. Bu yerda C 1 = p C 0 1 · C 1,1 · C 1,2 . Lemma 4.3.2. Ushbu ¯ ¯ ¯ ¯ ∂h n (ξ) ∂ξ m ¯ ¯ ¯ ¯ ≤ ‘|n| (4.3.15) baholash o‘rinli. Bu yerda C > 0 o‘zgarmas n ga ham m ga ham bog‘liq emas. 194 Isbot. Agar m 6= n bo‘lsa, u holda 2h n ∂h n ∂ξ m = ∂h 2 n ∂ξ m = −2(ξ n −λ 0 )· (λ 2m−1 − ξ n )(λ 2m − ξ n ) (ξ m − ξ n ) 3 · ∞ Y k=1 k6=n,m (λ 2k−1 − ξ n )(λ 2k − ξ n ) (ξ k − ξ n ) 2 = = 2h 2 n ξ n − ξ m , ya’ni ∂h n ∂ξ m = h n ξ n − ξ m bo‘ladi. Bunga asosan, agar m 6= n bo‘lgan holda quyidagi baholashga ega bo‘lamiz: ¯ ¯ ¯ ¯ ∂h n (ξ) ∂ξ m ¯ ¯ ¯ ¯ = |h n (ξ)| |ξ n − ξ m | ≤ C 2 |n| a . (4.3.16) Endi ¯ ¯ ¯ ∂h n (ξ) ∂ξ n ¯ ¯ ¯ funksiyani baholaymiz. h 2 n = (ξ n − λ 0 )P n bo‘lgani uchun ushbu 2h n ∂h n ∂ξ n = ∂h 2 n ∂ξ n = P n + (ξ n − λ 0 ) ∂P n ∂ξ n (4.3.17) tenglik o‘rinli bo‘ladi. Ushbu ln A n = ln ∞ Y k=1 k6=n µ 1 + ξ k − λ 2k−1 ξ n − ξ k ¶ = ∞ X k=1 k6=n ln µ 1 + ξ k − λ 2k−1 ξ n − ξ k ¶ ayniyatdan hosila olsak, ∂A n ∂ξ n = A n · ∞ X k=1 k6=n λ 2k−1 − ξ k (ξ n − λ 2k−1 )(ξ n − ξ k ) tenglik kelib chiqadi. Bu tenglikdan, |A n | ≤ ˜ C tengsizlikni e’tiborga olib, quyidagi baholashni keltirib chiqaramiz: ¯ ¯ ¯ ¯ ∂A n ∂ξ n ¯ ¯ ¯ ¯ ≤ |A n | · ∞ X k=1 k6=n |λ 2k−1 − ξ k | |ξ n − λ 2k−1 | · |ξ n − ξ k | ≤ ˜ C · ∞ X k=1 k6=n λ 2k − λ 2k−1 a 2 ≤ ˜ C 1 . Xuddi shu tarzda |B n | ≤ ˜ C tengsizlikni e’tiborga olib, quyidagi baholashga ¯ ¯ ¯ ¯ ∂B n ∂ξ n ¯ ¯ ¯ ¯ ≤ ˜ C 2 ega bo‘lamiz. Bu tengsizliklardan ¯ ¯ ¯ ¯ ∂P n ∂ξ n ¯ ¯ ¯ ¯ ≤ ¯ ¯ ¯ ¯ ∂A n ∂ξ n ¯ ¯ ¯ ¯|B n | + ¯ ¯ ¯ ¯ ∂B n ∂ξ n ¯ ¯ ¯ ¯|A n | ≤ ˜ C 3 195 kelib chiqadi. (4.3.17) tenglikka asosan |h n (ξ)| ¯ ¯ ¯ ¯ ∂h n (ξ) ∂ξ n ¯ ¯ ¯ ¯ ≤ ˜ C 4 n 2 Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling