Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
.
Lemma 4.3.1 ga muvofiq, C 1 |n| · ¯ ¯ ¯ ¯ ∂h n (ξ) ∂ξ n ¯ ¯ ¯ ¯ ≤ |h n (ξ)| ¯ ¯ ¯ ¯ ∂h n (ξ) ∂ξ n ¯ ¯ ¯ ¯ ≤ ˜ C 4 n 2 , ya’ni ¯ ¯ ¯ ¯ ∂h n (ξ) ∂ξ n ¯ ¯ ¯ ¯ ≤ ˜ C 5 |n| (4.3.18) baholash o‘rinli bo‘ladi. Nihoyat, (4.3.16) va (4.3.18) ga ko‘ra (4.3.15) kelib chiqa- di. Lemma 4.3.3. H(x) vektor-funksiya K Banax fazosida Lipshis shartini qanoatlantiradi, ya’ni shunday L = const > 0 o‘zgarmas son mavjudki, bun- da ixtiyoriy x, y ∈ K elementlar uchun ushbu kH(x) − H(y)k ≤ L · kx − yk (4.3.19) tengsizlik o‘rinli bo‘ladi. Isbot. Chekli orttirmalar haqidagi Lagranj teoremasiga ko‘ra |H n (x) − H n (y)| = |h n (ξ) − h n (η)| ≤ ∞ X k=1 ¯ ¯ ¯ ¯ ∂ h n (θ) ∂ξ k ¯ ¯ ¯ ¯ · |ξ k − η k | ≤ ≤ ∞ X k=1 Cn · |λ 2k − λ 2k−1 | · ¯ ¯sin 2 x k − sin 2 y k ¯ ¯ ≤ ≤ Cn · ∞ X k=1 |λ 2k − λ 2k−1 | · |x k − y k | = Cnkx − yk. Bu yerda ξ k = λ 2k−1 + (λ 2k − λ 2k−1 ) sin 2 x k va η k = λ 2k−1 + (λ 2k − λ 2k−1 ) sin 2 y k tengliklar ishlatildi. Endi kH(x) − H(y)k normani baholaymiz: kH(x) − H(y)k = ∞ X n=1 (λ 2n − λ 2n−1 )|H n (x) − H n (y)| ≤ ≤ Ckx − yk ∞ X n=1 n(λ 2n − λ 2n−1 ) ≤ Lkx − yk. Bu yerda L = C ∞ X n=1 nγ n , γ n = λ 2n − λ 2n−1 196 Bu baholash Lipshis sharti bajarilishini ko‘rsatadi. Izoh 4.3.1. Yuqoridagi (4.3.1)+(4.3.2) Koshi masalasi yechimining mavjudligini o‘rganishda q(x)–potensial ushbu q(x) ∈ ˜ W 2 [0, π] shartni qanoat- lantiradi deb hisoblaymiz. Bu holda ∞ P n=1 nγ n qatorning yaqinlashuvchanligi V.A. Marchenko teoremasidan kelib chiqadi. Shunday qilib, (4.3.1)+(4.3.2) Koshi masalasining statsionar bo‘lmagan yechi- mi t ∈ R 1 ning ixtiyoriy qiymatida mavjud va yagona bo‘ladi. 4-§. Izlar formulasi Ushbu −y 00 + q(x)y = λy, x ∈ R (4.4.1) Xill tenglamasini qaraylik. Bu yerda q(x)- haqiqiy, π davrli cheksiz differensial- lanuvchi funksiya, ya’ni q(x + π) = q(x) ∈ C ∞ (R). (4.4.2) c(x, λ) va s(x, λ) orqali (4.4.1) tenglamaning c(0, λ) = 1, c 0 (0, λ) = 0 va s(0, λ) = 0, s 0 (0, λ) = 1 boshlang‘ich shartlarni qanoatlantiruvchi yechimlarini belgilaymiz. U holda Xill tenglamasining ushbu ψ j (x, λ) = c(x, λ) + m j (λ)s(x, λ), j = 1, 2 (4.4.3) ko‘rinishdagi Veyl (Floke) yechimlari mazkur qo‘llanmaning ikkinchi bobida quril- gan edi. Bunda m j (λ), j = 1, 2 Xill tenglamasining Veyl-Titchmarsh funksiyalar- idan iborat bo‘lib quyidagi m j (λ) = s 0 (π, λ) − c(π, λ) 2s(π, λ) ∓ i p 4 − ∆ 2 (λ) 2s(π, λ) , j = 1, 2 (4.4.4) tengliklar orqali aniqlanar edi. Bu yerda ∆(λ) = c(π, λ) + s 0 (π, λ). (4.4.5) Bundan tashqari Xill tenglamasining ushbu y j (x, λ) = exp{∓iµx + x Z 0 σ(t, ∓µ)dt}, µ = √ λ, j = 1, 2 (4.4.6) ko‘rinishdagi chiziqli erkli (λ 6= 0) yechimlari ham o‘rganilgan edi. Bu formu- ladagi σ(x, µ) funksiya uchun (3.5.4)-(3.5.6) tengliklarning o‘rinli ekanligi ham ko‘rsatilgan. 197 Endi, ushbu ψ j (x, λ) = y j (x, λ), j = 1, 2 (4.4.7) tenglikning bajarilishini ko‘rsatamiz. Buning uchun ψ 2 (x, λ) = exp{iµx + x Z 0 σ 2 (t, µ)dt}, µ = √ λ (4.4.8) deb olamiz. Bunda σ 2 (t, µ) funksiya (3.5.4) tenglamani va iµ + σ 2 (0, µ) = ψ 0 2 (0, λ) = m 2 (λ) boshlang‘ich shartni qanoatlantiradi. Agar (4.4.1) tenglamada q(x) koeffitsiyent o‘rniga q(x + τ ), τ ∈ R funksiyani qo‘ysak, u holda ushbu −y 00 + q(x + τ )y = λy, x ∈ R, τ ∈ R (4.4.9) siljigan argumentli Xill tenglamasining Veyl-Titchmarsh funksiyasi m 1,2 (τ, λ) = s 0 (π, λ, t) − c(π, λ, t) 2s(π, λ, t) ∓ i p 4 − ∆ 2 (λ) 2s(π, λ, t) (4.4.10) ko‘rinishda bo‘lar edi. Bunda c(x, λ, t) va s(x, λ, t) lar (4.4.9) siljigan argumentli Xill tenglamasining c(0, λ, t) = 1, c 0 (0, λ, t) = 0, s(0, λ, t) = 0, s 0 (0, λ, t) = 1 boshlang‘ich shartlarni qanoatlantiruvchi yechimlari belgilangan. Bu holda, ψ j (x, λ, τ ), j = 1, 2 orqali (4.4.9) tenglamaning Veyl (Floke) yechimlarini bel- gilaymiz va ψ 2 (x, λ, τ ) ni ushbu ψ 2 (x, λ, τ ) = exp{iµx + x Z 0 σ 2 (t, µ, τ )dt}, µ = √ λ (4.4.11) ko‘rinishda yozib olamiz. Bu yerda ham σ 2 (t, µ, τ ) funksiyani quyidagi qatorga yoyish mumkin: σ 2 (t, µ, τ ) = ∞ X k=1 σ k (x, τ ) (2iµ) k . (4.4.12) Chunki m 2 (λ 2 ) va m 2 (λ 2 , τ )Veyl-Titchmarsh funksiyalarni µ −1 ning darajalari bo‘yicha qatorga yoyish mumkin. (4.4.12) yoyilmaning σ k (x, τ ) koeffitsiyentlari quyidagi σ 1 (x, τ ) = q(x+τ ), σ 2 (x, τ ) = −q 0 (x+τ ), σ 3 (x, τ ) = q 00 (x+τ )−q 2 (x+τ ), . . . σ m (x, τ ) = −σ 0 m−1 (x, τ ) − m−2 X j=1 σ m−j−1 (x, τ )σ j (x, τ ), (4.4.13) 198 rekurent formulalar orqali aniqlanadi. Shuning uchun σ k (x, τ ) = σ k (x + τ ), σ 2 (x, µ, τ ) = σ 2 (x + τ, µ) (4.4.14) munosabatlar o‘rinli bo‘ladi. Bundan foydalanib (4.4.12) tenglikni σ 2 (x + τ, µ) = ∞ X k=1 σ k (x + τ ) (2iµ) k ko‘rinishda yozish mumkin. Oxirgi tenglikda τ = 0 desak σ 2 (x, µ) = ∞ X k=1 σ k (x) (2iµ) k ≡ σ(x, µ) hosil bo‘ladi. Bundan ψ 2 (x, λ) = y 2 (x, λ) kelib chiqadi. Xuddi shunday qilib ψ 1 (x, λ) = y 1 (x, λ) tenglikni ham ko‘rsatish mumkin. Demak, ψ j (x, λ), j = 1, 2 uchun ham ψ 1,2 (x, λ) = exp{∓iµx + x Z 0 σ(t, ∓µ)dt}, (4.4.15) tasvir o‘rinli bo‘lar ekan. Endi (4.4.1) Xill tenglamasi uchun izlarni hisoblash formulalarini keltirib chiqarish algoritmi bilan shug‘ullanamiz. Buning uchun avvalo ψ j (x, λ) yechim- larning (4.4.3) va m j (λ) - funksiyalarning (4.4.4) ko‘rinishlaridan foydalanib ψ 0 2 (0, λ) − ψ 0 1 (0, λ) = i p 4 − ∆ 2 (λ) s(π, λ) topib olamiz. So‘ngra (4.4.15) dan ψ 0 2 (0, λ) − ψ 0 1 (0, λ) = 2iµ + σ(0, µ) − σ(0, −µ) hosil qilamiz. Bu tengliklardan foydalanib ushbu 2iµ + σ(0, µ) − σ(0, −µ) = i p 4 − ∆ 2 (λ) s(π, λ) (4.4.16) ayniyatni topamiz. Oxirgi tenglikning chap qismini (3.5.4) qatordan foydalanib quyidagi 2iµ + σ(0, µ) − σ(0, −µ) = 2iµ + ∞ P k=1 [1 − (−1) k ] σ k (0) (2iµ) k = = 2iµ + 2 ∞ P j=0 σ 2j+1 (0) (2iµ) 2j+1 (4.4.17) 199 ko‘rinishda yozib olamiz. (4.4.16) ayniyatning o‘ng tomonini ushbu s(π, λ) = π ∞ Y j=1 λ − ξ j j 2 , p 4 − ∆ 2 (λ) = 2π p λ − λ 0 v u u t ∞ Y j=1 (λ − λ 2j−1 )(λ − λ 2j ) j 4 formulalardan foydalanib quyidagi i p 4 − ∆ 2 (λ) s(π, λ) = 2i √ λ µ 1 − λ 0 λ ¶ 1 2 ∞ Y j=1 ³ 1 − λ 2j−1 λ ´ ³ 1 − λ 2j λ ´ ³ 1 − ξ j λ ´ 2 1 2 (4.4.18) shaklda yozib olamiz. (4.4.17) va (4.4.18) tengliklarni (4.4.16) ayniyatga qo‘yib 2iµ + 2 ∞ X j=0 σ 2j+1 (0) (2iµ) 2j+1 = 2iµ µ 1 − λ 0 λ ¶ 1 2 ∞ Y j=1 ³ 1 − λ 2j−1 λ ´ ³ 1 − λ 2j λ ´ ³ 1 − ξ j λ ´ 2 1 2 topamiz. Bu tenglikning ikkala tarafini 2iµ ga bo‘lib 1 + 2 ∞ X j=0 σ 2j+1 (0) (2iµ) 2j+2 = µ 1 − λ 0 λ ¶ 1 2 ∞ Y j=1 ³ 1 − λ 2j−1 λ ´ ³ 1 − λ 2j λ ´ ³ 1 − ξ j λ ´ 2 1 2 hosil qilamiz. Bunda i 2j+2 = −(−1) j , µ 2j+2 = λ j+1 larni e’tiborga olsak, oxirgi tenglik 1 − ∞ X j=0 (−1) j σ 2j+1 (0) 2 2j+1 λ j+1 = µ 1 − λ 0 λ ¶ 1 2 ∞ Y j=1 ³ 1 − λ 2j−1 λ ´ ³ 1 − λ 2j λ ´ ³ 1 − ξ j λ ´ 2 1 2 ko‘rinishni oladi. Bu tenglikning ikkala tarafini logarifmlab ln à 1 − ∞ X j=0 (−1) j σ 2j+1 (0) 2 2j+1 λ j+1 ! = 1 2 ln µ 1 − λ 0 λ ¶ + + 1 2 ∞ X j=1 · ln µ 1 − λ 2j−1 λ ¶ + ln µ 1 − λ 2j λ ¶ − 2 ln µ 1 − ξ j λ ¶¸ (4.4.19) topamiz. Bu yerda ushbu ln(1 − x) = ∞ X n=1 1 n x n , − 1 < x < 1 200 yoyilmani ishlatsak, (4.4.19) tenglik quyidagi ko‘rinishni oladi: ∞ P n=1 1 n à ∞ P j=0 (−1) j σ 2j+1 (0) 2 2j+1 λ j+1 ! n = 1 2 ∞ P n=1 1 n ¡ λ 0 λ ¢ n + + 1 2 ∞ P j=1 ( ∞ P j=1 1 n h³ λ 2j−1 λ ´ n + ³ λ 2j λ ´ n − 2 ³ ξ j λ ´ n i ) . (4.4.20) Oxirgi ayniyatda λ −1 va λ −2 lar oldidagi koeffisiyentlarni mos ravishda ten- glashtirib (3.5.5) formuladan foydalansak, quyidagi q(0) = λ 0 + ∞ P j=1 (λ 2j−1 + λ 2j − 2ξ j ), − 1 2 q 00 (0) + q 2 (0) = λ 2 0 + ∞ P j=1 (λ 2 2j−1 + λ 2 2j − 2ξ 2 j ) .......................................................... (4.4.21) Xill tenglamasining izlarini hisoblash uchun formulalar hosil bo‘ladi. Siljigan argumentli (4.4.9) Xill tenglamasi holida (4.4.21) izlarni hisoblash formulalari quyidagi ko‘rinishni oladi: q(τ ) = λ 0 + ∞ P j=1 (λ 2j−1 + λ 2j − 2ξ j (τ )), − 1 2 q 00 (τ ) + q 2 (τ ) = λ 2 0 + ∞ P j=1 (λ 2 2j−1 + λ 2 2j − 2ξ 2 j (τ )), ..................................................................... (4.4.22) Bunda ξ j (τ ) lar (4.4.9) tenglamaga qo‘yilgan Dirixle chegaraviy masalasining xos qiymatlaridan iborat bo‘lib λ 2j−1 ≤ ξ j (τ ) ≤ λ 2j , j ≥ 1 tengsizlikni qanoatlantiradi. 5-§. Izlar formulasini keltirib chiqarishning yana bir usuli Ushbu H(t)y ≡ −y 00 + t q(x)y = λy y(0) = y(π) y 0 (π) = y 0 (π) (4.5.1) davriy chegaraviy masalani ko‘rib chiqamiz. Bu yerda q(x) ∈ C 1 [0, π]- haqiqiy π- davrli funksiya, t ∈ [0 , 1] parametr. 201 Berilgan chegaraviy masalaning xos qiymatlarini λ 0 (t) , λ 3 (t) , λ 4 (t), λ 7 (t) , λ 8 (t) , ... , λ 4k−1 (t) , λ 4k (t) , ... va uning ortonormallangan xos funksiyalarini y 0 (x, t) , y 3 (x, t) , ... , y 4k−1 (x, t) , y 4k (x, t) , ... orqali belgilaymiz. Keyinchalik ushbu c 0 = 1 π π Z 0 q(x)dx. (4.5.2) belgilashdan foydalanamiz. Quyidagi H(t)y 4k (x, t) = λ 4k (t)y 4k (x, t) tenglikni ikkala tarafini y 4k (x, t) ga skalyar ko‘paytirib λ 4k (t) = (H(t)y 4k , y 4k ) (4.5.3) hosil qilamiz. Bu tenglikni ikkala tarafini to‘zgaruvchi bo‘yicha differensiallab ˙λ 4k (t) = (H(t) ˙y 4k , y 4k ) + (q(x)y 4k , y 4k ) + (H(t)y 4k , y 4k ) = π Z 0 q(x)y 2 4k (x, t)dx (4.5.4) topamiz. Xuddi shuningdek ˙λ 4k−1 (t) uchun ˙λ 4k−1 (t) = π Z 0 q(x)y 2 4k−1 (x, t)dx (4.5.5) formulani keltirib chiqarish mumkin. Agar (4.5.1) chegaraviy masalada t = 0 deb olsak, u holda −y 00 = λy y(0) = y(π) y 0 (0) = y 0 (π) bo‘ladi. Bu chegaraviy masalaning xos qiymatlari va ortonormallangan xos funksiyalari quyidagi tengliklardan aniqlanadi: λ 0 = 0, λ 4n−1 = (2n) 2 , λ 4n = (2n) 2 , ... n = 1, 2, 3, ... y 0 (x, 0) = 1 √ π , y 4n−1 (x, 0) = r 2 π cos 2nx, y 4n (x, 0) = r 2 π sin 2nx, n = 1, 2, 3, .... 202 Quyidagi y 2 0 (x, 0) − 1 π + ∞ X n=1 · y 2 4n−1 (x, 0) + y 2 4n (x, 0) − 2 π ¸ = 0 (4.5.6) tenglikning bajarilishi ravshan. Endi (4.5.4) va (4.5.5) tengliklarni t o‘zgaruvchi bo‘yicha [ 0 Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling