1-§. Bir va ko`p o`zgaruvchili funksiya haqida tushuncha. Funksiyaning aniqlanish sohasi va qiymatlar to`plami
-§. Bir va ko`p o`zgaruvchili funksiya limiti
Download 486.56 Kb.
|
ko\'p
2-§. Bir va ko`p o`zgaruvchili funksiya limiti
1. Bir va ko`p o`zgaruvchili funksiya limiti haqida tushuncha. Ajoyib limitlar. Yaqinlashuvchi funksiya xossalari y = f (M) = f (x1; x2; …; xn) funksiya V Rn to`plamda aniqlangan bo`lib, nuqta V to`plamning quyuqlanish nuqtasi bo`l-sin. Funksiya limitining bir-biriga o`zaro teng kuchli Geyne va Koshi tillaridagi ta`riflari mavjud. Ko`p o`zgaruvchili funksiya limiti Geyne yoki nuqtalar ketma-ketligi tilida quyidagicha ta`riflanadi: Har bir hadi V to`plamga tegishli va M0 quyuqlanish nuqtasidan farqli har qanday M1, M2, …, Mk, … nuqtalar ketma-ketligi M0 nuqtaga intilganda, mos funksiya qiymatlari f (M1), f (M2), …, f (Mk), … sonli ketma-ketligi b songa intilsa, u holda b soni f (M) funksiyaning M → M0 dagi limiti deyiladi va yoki ko`rinishda yoziladi. Xususan, bir o`zgaruvchili y = f (x) funksiya uchun: har qanday x0 songa intiluvchi argument qiymatlari x1, x2, …, xk, … sonli ketma – ketligi uchun, bu yerda xk є V, xk ≠ x0 (k = 1, 2, 3, …), funksiya qiymatlari f (x1), f (x2), …, f (xk), … sonli ketma – ketligi b songa intilsa, b soni f (x) funksiyaning x → x0 dagi limiti deyiladi va ko`rinishda yoziladi. Funksiya limiti Koshi yoki ε – δ tilida quyidagicha ta`riflanadi: Har qanday oldindan tayinlanadigan ε > 0 son uchun M0 nuqtaning δ atrofi Sδ(M0) ni ko`rsatish mumkin bo`lsaki, barcha M є Sδ(M0) ∩ V, M ≠ M0 nuqtalar uchun |f (M) - b| < ε tengsizlik o`rinli bo`lsa, u holda b soni f (M) funksiyaning M → M0 dagi limiti deyiladi. Xususiy holda, bir o`zgaruvchili y = f (x) funksiya uchun: Har qanday ε > 0 son uchun shunday bir δ > 0 son tanlash mumkin bo`lsaki, V to`plamga tegishli va 0 < |x - x0| < δ munosabatlarni qanoatlantiruvchi har bir x uchun |f (x) – b| < ε tengsizlik bajarilsa, b soni f (x) funksiyaning x → x0 dagi limiti deyiladi (1-rasm). Yuqorida keltirilgan ta`riflardan birini qo`llab, masalan, , 2) yoki 3) mavjud emasligini isbotlash mumkin. 3-rasm.
Quyida sanab o`tiladigan va ajoyib limitlar nomini olgan limitlar ham ta`riflar asosida isbotlanadi.
(1-ajoyib limit asosiy shakli). 2. . 3. . 4. . 5. . (2-ajoyib limit asosiy shakli). 6. . 7. . 8. . 9. . Limitga ega funksiyalar o`zlarining quyidagi xossalari bilan xarakterlanadi: 1) y = f (M) funksiya M → M0 da limitga ega bo`lsa, ushbu limit yagonadir; 2) y = f (M) funksiya M → M0 da chekli limitga ega bo`lsa, M 0 nuqtaning δ atrofi Sδ(M0) mavjudki, Sδ(M0) ∩ V to`plamda f (M) funksiya chegaralangan bo`ladi. Download 486.56 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling