60-odd years of moscow mathematical


Download 1.08 Mb.
Pdf ko'rish
bet34/153
Sana03.10.2023
Hajmi1.08 Mb.
#1690973
1   ...   30   31   32   33   34   35   36   37   ...   153
Bog'liq
Moscow olympiad problems

x
0
a
3
= 0,
then
x
4
a
1
x
3
a
2
x
2
a
3
a
4
..
. (x − x
0
)
2
.
17.1.9.2. Delete 100 digits from the number 1234567891011 . . . 9899100 so that the remaining number
were as big as possible.
17.1.9.3. Given 100 numbers a
1
, . . . , a
100
such that











a
1
− 3a
2
+ 2a
3
≥ 0,
a
2
− 3a
3
+ 2a
4
≥ 0,
. . . . . . . . . . . . . . . . . . . . . .
a
99
− 3a
100
+ 2a
1
≥ 0,
a
100
− 3a
1
+ 2a
2
≥ 0,
prove that the numbers are equal.
17.1.9.4. Consider 4ABC and a point inside it. Let A
1
B
1
C
1
be the intersection points of AS,
BSCS with BCACAB, respectively. Prove that at least in one of the resulting quadrilaterals AB
1
SC
1
,
C
1
SA
1
BA
1
SB
1
both angles at either C
1
and B
1
, or C
1
and A
1
, or A
1
and B
1
are not acute.
17.1.9.5. Do there exist points ABCin space, such that AB CD = 8, AC BD = 10, and
AD BC = 13?
Grade 10
17.1.10.1. Find all real solutions of the equation x
2
+ 2x · sin(xy) + 1 = 0.
17.1.10.2. See Problem 17.1.9.2.
17.1.10.3. Given numbers a
1
= 1, a
2
, . . . , a
100
such that
a
i
− 4a
i+1
+ 3a
i+2
≥ 0 for all = 123, . . . , 98,
a
99
− 4a
100
+ 3a
1
≥ 0,
a
100
− 4a
1
+ 3a
2
≥ 0.
Find a
2
, a
3
, . . . , a
100
. (cf. Problem 17.1.9.3.)
17.1.10.4. See Problem 17.1.9.4.
17.1.10.5. See Problem 17.1.9.5.


46
MOSCOW MATHEMATICAL OLYMPIADS 1 – 59
Tour 17.2
Grade 7
17.2.7.1. Given a piece of graph paper with a letter assigned to each vertex of every square such that
on every segment connecting two vertices that have the same letter and are on the same line of the mesh,
there is at least one vertex with another letter. What is the least number of distinct letters needed to plot
such a picture?
17.2.7.2*. Solve the system



















10x
1
+ 3x
2
+ 4x
3
x
4
x
5
= 0,
11x
2
+ 2x
3
+ 2x
4
+ 3x
5
x
6
= 0,
15x
3
+ 4x
4
+ 5x
5
+ 4x
6
x
7
= 0,
2x
1
x
2
− 3x
3
+ 12x
4
− 3x
5
x
6
x
7
= 0,
6x
1
− 5x
2
+ 3x
3
− x
4
+ 17x
5
x
6
= 0,
3x
1
+ 2x
2
− 3x
3
+ 4x
4
x
5
− 16x
6
+ 2x
7
= 0,
4x
1
− 8x
2
x
3
x
4
+ 3x
5
+ 19x
7
= 0.
17.2.7.3. How many axes of symmetry can a heptagon have?
17.2.7.4. Let 1, 2, 3, 5, 6, 7, 10, . . . be all the divisors of
= 2 · · · · 11 · 13 · 17 · 19 · 23 · 29 · 31
(the product of primes 2 to 31) written in increasing order. Below this series of divisors, write the following
series of 1’s or 1’s: write 1 below any number that factors into an even number of prime factors and below
a 1; write 1 below the remaining numbers. Prove that the sum of the series of 1’s and 1’s is equal to 0.
(Cf. Problem 17.2.8.5.)
17.2.7.5. The map of a town shows a plane divided into equal equilateral triangles. The sides of these
triangles are streets and their vertices are intersections; 6 streets meet at each junction. Two cars start
simultaneously in the same direction and at the same speed from points and situated on the same street
(the same side of a triangle). After any intersection an admissible route for each car is either to proceed in
its initial direction or turn through 120

to the right or to the left; see Fig. 21. Can these cars meet? (Either
prove that these cars won’t meet or describe a route by which they will meet.)
Figure 21. (Probl. 17.2.7.5)
Grade 8
17.2.8.1. A 17 × 17 square is cut out of a sheet of graph paper. Each cell of this square has one of the
numbers from 1 to 70. Prove that there are 4 distinct squares whose centers ABCare the vertices of
a parallelogramsuch that AB k CD, moreover, the sum of the numbers in the squares with centers and C
is equal to that in the squares with centers and D.
17.2.8.2. Given four straight lines, m
1
m
2
m
3
m
4
, intersecting at and numbered clockwise with O
as the center of the clock, we draw a line through an arbitrary point A
1
on m
1
parallel to m
4
until the line
meets m
2
at A
2
. We draw a line through A
2
parallel to m
1
until it meets m
3
at A
3
. We also draw a line
through A
3
parallel to m
2
until it meets m
4
at A
4
. Now, we draw a line through A
4
parallel to m
3
until it
meets m
1
at B. Prove that OB ≤ OA
1
2 . (See Fig. 22.)
17.2.8.3. See Problem 17.2.7.2.


OLYMPIAD 17 (1954)
47
Figure 22. (Probl. 17.2.8.2)
17.2.8.4. See Problem 17.2.7.3.
17.2.8.5. Let 1, 2, 3, 5, 6, 7, 10, . . . be all the divisors of
= 2 · · · · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37
(the product of primes 2 to 37) written in increasing order. Below this series of divisors, write the following
series of 1’s or 1’s: write 1 below any number that factors into an even number of prime factors and below
a 1; write 1 below the remaining numbers. Prove that the sum of the series of 1’s and 1’s is equal to 0.
(Cf. Problem 17.2.7.4.)
Grade 9
17.2.9.1. Rays l
1
and l
2
pass through a point O. Segments OA
1
and OB
1
on l
1
, and OA
2
and OB
2
on l
2
, are drawn so that OA
1
OA
2
6OB
1
OB
2
. Find the set of all intersection points of lines A
1
A
2
and B
1
B
2
as l
2
rotates around while l
1
is fixed.
17.2.9.2. See Problem 17.2.8.2; prove that OB ≤
1
4
OA
1
. (See Fig. 22.)
17.2.9.3*. Positive numbers x
1
, x
2
, . . . , x
100
satisfy the system
½
x
2
1
x
2
2
· · · x
2
100
10 000,
x
1
x
2
· · · x
100
300.
Prove that among these numbers there are three whose sum is greater than 100.
17.2.9.4. Given a sequence of numbers a
1
a
2
. . . a
15
, one can always construct a new sequence b
1
,
b
2
. . . b
15
, where b
i
is equal to the number of terms in the sequence {a
k
}
15
k=1
less than a
i
(= 12, . . . , 15).
Is there a sequence {a
k
}
15
k=1
for which the sequence {b
k
}
15
k=1
is 1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?
17.2.9.5. Consider five segments AB
1
AB
2
AB
3
AB
4
AB
5
. From each point B
i
there can exit either
5 segments or no segments at all, so that the endpoints of any two segments of the resulting graph (system of
segments) do not coincide. (See Fig. 23.) Can the number of free endpoints of the segments thus constructed
be equal to 1001? (A free endpoint is an endpoint from which no segment begins.)
Figure 23. (Probl. 17.2.9.5)


48
MOSCOW MATHEMATICAL OLYMPIADS 1 – 59
Grade 10
17.2.10.1. How many planes of symmetry can a triangular pyramid have?
17.2.10.2. See Problem 17.2.9.2.
17.2.10.3. See Problem 17.2.9.3.
17.2.10.4. The absolute values of all roots of the quadratic equation x
2
+Ax+= 0 and x
2
+Cx+= 0
are less then 1. Prove that so are absolute values of the roots of the quadratic equation
x
2
C
2
D
2
= 0.
17.2.10.5. Consider the set of all 10-digit numbers expressible with the help of figures 1 and 2 only.
Divide it into two subsets so that the sum of any two numbers of the same subset is a number which is
written with not less than two 3’s.
Olympiad 18 (1955)
Tour 18.1
Grade 7
18.1.7.1. The numbers 12, . . . , 49 are arranged in a square table as follows:
1
2
. . .
7
8
9
. . .
14
. . .
. . .
. . .
. . .
43
44
. . .
49
Among these numbers we select an arbitrary number and delete from the table the row and the column
which contain this number. We do the same with the remaining table of 36 numbers, etc., 7 times. Find the
sum of the numbers selected. (See Problem 18.1.9.1 below.)
18.1.7.2. We are given a right triangle ABC and the median BD drawn from the vertex of the right
angle. Let the circle inscribed in 4ABD be tangent to side AD at K. Find the angles of 4ABC if K
divides AD in halves.
18.1.7.3. Consider an equilateral triangle 4ABC and points and on the sides AB and BC such
that AE CD. Find the locus of intersection points of AE with CD as points and vary.
18.1.7.4. Is there an integer such that n
2
+ 1 is divisible by 1955?
18.1.7.5. Find all rectangles that can be cut into 13 equal squares.
Grade 8
18.1.8.1. Let abbe positive integers, b < 10 and 2
n
= 10b. Prove that if n > 3, then 6 divides
ab.
18.1.8.2. Consider a quadrilateral ABCD and points KLon sides ABBCCD and AD,
respectively, such that KB BL aM D DN and KL ∦ M N . Find the set of all the intersection
points of KL with M N as and vary.
18.1.8.3. A square table with 49 small squares is filled with numbers 1 to 7 so that in each row and in
each column all numbers from 1 to 7 are present. Let the table be symmetric through the main diagonal.
Prove that on this diagonal all the numbers 1, 2, 3, . . . , 7 are present. (See Problem 18.1.10.1 below.)
18.1.8.4. Which convex domains on a plane can contain an entire straight line?
18.1.8.5. There are four points ABCon a circle. Circles are drawn through each pair of neighbor-
ing points. Denote the intersection points of neighboring circles by A
1
B
1
C
1
D
1
. (Some of these points
may coincide with previously given ones.) Prove that points A
1
B
1
C
1
D
1
lie on one circle; see Fig. 24.
Grade 9
18.1.9.1. The numbers 12, . . . , k
2
are arranged in a square table as follows:
1
2
. . .
k
+ 1
+ 2
. . .
2k
. . .
. . .
. . .
. . .
(k − 1)+ 1
(k − 1)+ 2
. . .
k
2


OLYMPIAD 18 (1955)
49
Figure 24. (Probl. 18.1.8.5)
Among these numbers we select an arbitrary number and delete from the table the row and the column
which contain this number. We do the same with the remaining table of (k − 1)
2
numbers, etc., times.
Find the sum of the numbers selected.
18.1.9.2. Given two distinct nonintersecting circles none of which is inside the other, see Fig. 25. Find
the locus of the midpoints of all segments whose endpoints lie on the circles.
Figure 25. (Probl. 18.1.9.2)
18.1.9.3. Find all real solutions of the system:
½

Download 1.08 Mb.

Do'stlaringiz bilan baham:
1   ...   30   31   32   33   34   35   36   37   ...   153




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling