7-bob. Differensial hisob
Funksiyani differensiallash qoidalari. Hosilalar jadvali
Download 315,57 Kb.
|
7-bob. Differensial hisob
- Bu sahifa navigatsiya:
- . B) . C) . D) E)
- . B) . C) . D) . E) . 3. Differensiallanuvchi funksiyalar haqidagi asosiy teoremalar
- 4. Funksiya differensiali. Yuqori tartibli hosila va differensiallar
- 5. Funksiyani I tartibli hosila yordamida tekshirish
2. Funksiyani differensiallash qoidalari. Hosilalar jadvali
A) (Cu)=Cu (C-const.). B) (uv)= uv. C) (uv)= uv+uv. D) . E) (f(u))= f (u)u.
A) . B) . C) . D) E) .
A) y¢= x2 /cosx. B) y¢= 2x /sinx. C) y¢= 2x /cosx. D) y¢= x(2sinx +xcosx)/sin2x. E) y¢= x(2sinx- xcosx)/ sin2x .
A) u′v′ . B) u′v′+uv . C) u′v+uv′ . D) u′v–uv′ . E) u′v′–uv .
A) y¢= x2cosx. B) y¢= x(xsinx-2cosx). C) y¢= 2xsinx. D) y¢= x(xcosx+2sinx). E) y¢= x(xcosx-2sinx) .
murakkab funksiya hosilasini hisoblash formulasini ko‘rsating. A) y¢=f ¢(u) . B) y¢=f (u¢) . C) y¢=f ¢(u) . D) y¢=f ¢(u)u¢ . E) y¢=f(u¢)u¢ .
A) y¢=coslnx. B) y¢=sin(1/x). C) y¢=(sinlnx)/x. D) y¢=(coslnx)/lnx. E) y¢=(coslnx)/x .
A) y¢=cosarcsinx. B) y¢=1. C) y¢= sinarccosx. D) y¢= cosarccosx. E) y¢=x.
A) y¢= sin(x2+1). B) y¢= −sin(x2+1). C) y¢= sin2x. D) y¢=2xsin(x2+1). E) y¢=-2xsin(x2+1).
A) . B) . C) . D) . E) . 3. Differensiallanuvchi funksiyalar haqidagi asosiy teoremalar
A) Biror [a,b] kesmada aniqlangan. B) [a,b] kesmada uzluksiz. C) [a,b] kesma ichida differensiallanuvchi. D) [a,b] kesma chegaralarida f(a)=f(b). E) Keltirilgan barcha shartlar qo‘yiladi .
A) f ′(c)>0. B) f ′(c)<0. C) f ′(c)=0. D) f ′(c)≠0. E) f ′(c)= f (c).
A) [0, 1]. B) [0, π/2]. C) [0, π]. D) [2, π]. E) [π/2, π] .
A) [1–α, 1+α], α>0 . B) [2–α, 2+α], α>0 . C) [3–α, 3+α], α>0 . D) [4–α, 4+α], α>0 . E) bunday kesmalar mavjud emas .
A) c=1.5 . B) c=2 . C) c=2.5 . D) c=3 . E) c=4.5 .
A) c=2 . B) c=3 . C) c=4 . D) c=5 . E) c=7 .
A) Biror [a,b] kesmada aniqlangan . B) [a,b] kesmada uzluksiz . C) [a,b] kesma ichida differensiallanuvchi . D) [a,b] kesma chegaralarida f(a)=f(b) . E)Keltirilgan barcha shartlar talab etiladi .
A) . B) . C) . D) . E) .
A) [π/2,π] . B) [0,π/2] . C) [0,π] . D) [π,2π] . E) Barcha kesmalarda Lagranj teoremasi o‘rinli bo’ladi .
A) c=a+b/2. B) c= b−a/2. C) c=(a+b)/2. D) c=(b−a)/2. E) umuimy holda c nuqtani aniqlab bo’lmaydi. 4. Funksiya differensiali. Yuqori tartibli hosila va differensiallar
A) df= ∆x. B) df=A+∆x. C) df=A∆x. D) df=A–∆x. E) df= α(∆x)∆x.
A) f (x)>0. B) f (x)<0. C) f (x)=0. D) f (x)≠0. E) barcha hollarda df differensial mavjud bo‘ladi.
A) . B) . C) . D) . E) .
differensiali qanday topiladi ? A) df= f (x)+dx . B) df= f (x)–dx C) df= f (x)/dx . D) df= f (x)dx . E) df= f (x) .
A) . B) . C) . D) . E) .
A) . B) . C) . D) . E) .
A) dy= sin(3x+4)dx. B) dy= 4sin(3x+4)dx. C) dy= –3sin(3x+4)dx. D) dy= –4sin(3x+4)dx. E) dy= 3sin(3x+4)dx.
A) dy= xdx. B) dy= lnxdx. C) dy=(1/x)dx. D) dy= (1+lnx)dx. E) dy=(1–lnx)dx.
to‘g‘ri ifodalangan ? A) f(x+∆x)≈ f(x)df . B) f(x+∆x)≈ f(x)+df . C) f(x+∆x)≈ f(x)/df . D) f(x+∆x)≈ df / f(x) . E) f(x+∆x)≈ f(x)±df .
A) . B) . C) . D) . E) barcha hosilalar to‘g‘ri yozilgan. 5. Funksiyani I tartibli hosila yordamida tekshirish
A) f (x)=0 . B) f (x)≠0 . C) f (x)>0 . D) f (x)<0 . E) f (x)<∞ .
A) (1, 1). B) (1, ). C) (1, ). D) (,1). E) (, 1).
A) (0, e). B) (, 1/e). C) (0, ). D) (0, 1/e). E) (1/e, ).
yordamida qanday munosabatdan topiladi? A) f (x)=0 . B) f (x)≠0 . C) f (x)>0 . D) f (x)<0 . E) f (x)<∞ .
A) (1, 1). B) (1, ). C) (1, ). D) (,1). E) (, 1).
A) (0, e). B) (, 1/e). C) (0, ). D) (0, 1/e). E) (1/e, ).
A) f(x0+x)<f(x0). B) f(x0–x)<f(x0). C) f<0. D) f(x0+x)+f(x0x)<2f(x0). E) barcha tasdiqlar o‘rinli bo‘ladi.
A) f(x0+x)>f(x0). B) f(x0–x)>f(x0). C) f>0. D) f(x0+x)+f(x0x)>2f(x0). E) barcha tasdiqlar o‘rinli bo’ladi.
A) f (x0)>0. B) f (x0)<0. C) f (x0)=0. D) f (x0)0. E) f (x0) mavjud emas.
A) ±1 . B) 0 va 1 . C) –1 va 0 . D) 2 va 3 . E) ±2 . Download 315,57 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling