Alisher navoiy nomidagi samarqand davlat universiteti hisoblash usullari kafedrasi
Download 5.01 Kb. Pdf ko'rish
|
№ 6 1 , 12 7 , 3 34 , 1 6 , 7 3 , 6 6 , 8 7 , 12 4 , 7 3 , 8 4 , 5 5 , 2 5 , 5 5 , 3 4 , 4 4 , 2 5 , 15 1 , 14 2 , 23 1 , 12 3 , 4 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 7 3 , 7 8 , 23 7 , 6 8 , 8 6 , 5 4 , 9 3 , 14 5 , 6 2 , 13 3 , 6 6 , 6 1 , 2 4 , 5 2 , 14 4 , 23 4 , 14 7 , 12 3 , 14 3 , 5 4 , 14 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 8 8 , 1 7 , 1 4 , 20 1 , 20 10 9 , 1 1 , 5 4 , 4 7 , 7 3 , 3 1 , 2 4 , 5 1 , 2 7 , 1 1 , 3 1 , 3 1 , 2 3 , 1 10 7 , 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 9 10 2 , 5 1 , 4 3 , 1 1 , 7 20 8 , 1 6 , 1 4 , 1 2 , 1 19 7 , 1 5 , 1 3 , 4 1 , 1 10 4 , 57 9 , 1 8 , 1 7 , 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 10 2 , 2 1 , 2 2 9 , 1 8 , 1 7 , 4 8 , 4 9 , 4 5 1 , 5 2 , 4 8 , 3 2 , 2 5 , 1 1 , 1 5 , 6 4 , 6 3 , 6 2 , 6 1 , 6 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 11 6 , 1 5 , 4 4 , 1 3 , 1 2 , 1 1 , 1 6 , 9 5 , 8 4 , 7 2 , 6 10 5 , 1 4 , 1 2 , 2 3 , 1 01 , 6 1 , 5 2 , 4 1 , 3 2 , 2 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 12 8 , 20 4 , 3 1 , 7 10 3 , 6 7 , 1 1 , 7 5 , 6 8 , 1 7 , 11 8 , 12 5 , 23 7 , 11 5 , 7 1 , 27 5 , 0 8 , 11 5 , 34 1 , 2 8 , 35 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 13 1 , 1 10 1 , 2 4 , 31 10 2 , 1 8 , 4 9 , 3 7 , 1 8 , 2 1 , 11 2 , 1 1 , 1 1 , 21 2 , 45 5 , 7 8 , 2 5 , 37 7 , 1 1 , 35 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 14 1 , 1 1 , 2 8 , 1 5 , 7 7 , 1 20 10 1 , 1 3 , 1 5 , 7 1 , 1 1 , 20 1 , 30 1 , 1 3 , 3 3 , 1 1 , 13 1 , 11 2 , 11 1 , 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 15 1 , 1 10 1 , 2 4 , 31 10 2 , 1 8 , 4 9 , 3 7 , 1 8 , 2 5 , 1 4 , 1 20 3 , 1 10 1 , 1 7 , 7 1 , 2 8 , 1 5 , 7 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 16 7 , 1 3 , 3 5 , 3 1 , 2 1 , 2 10 1 , 17 1 , 7 1 , 21 7 , 1 3 , 1 5 , 7 3 , 1 1 , 11 5 , 17 10 5 , 1 10 4 , 1 1 , 30 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 17 2 , 6 2 , 14 3 , 3 5 , 11 4 , 2 2 , 6 5 , 2 3 , 4 4 , 5 2 , 8 5 , 21 2 , 9 3 , 8 2 , 6 5 , 11 8 , 8 7 , 6 7 , 12 1 , 8 3 , 7 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 18 2 , 1 8 , 2 2 , 6 4 , 14 6 , 8 15 4 , 14 5 , 4 1 , 21 15 6 , 4 7 , 8 4 , 12 7 , 31 22 5 , 3 7 , 9 3 , 6 5 , 12 8 , 4 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x 243 № 19 5 , 6 2 , 12 5 , 6 2 , 5 2 , 13 4 , 5 8 , 8 3 , 18 7 , 7 6 , 8 1 , 17 2 , 6 3 , 14 3 , 8 8 , 5 23 , 2 42 3 , 8 2 , 7 4 , 6 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 20 5 , 8 7 , 12 4 , 6 7 , 13 7 , 2 4 , 6 7 , 4 2 , 5 3 , 22 4 , 8 4 , 4 8 , 5 7 , 12 3 , 4 3 , 6 2 , 13 5 , 8 2 , 4 2 , 3 2 , 14 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 21 2 , 9 7 , 3 3 , 8 2 , 12 5 , 7 4 , 12 7 , 8 4 , 14 6 , 6 6 , 15 6 , 6 6 , 6 5 , 12 7 , 7 7 , 10 8 , 5 3 , 14 8 , 3 4 , 12 3 , 7 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 22 8 , 10 3 , 9 8 , 13 6 , 6 5 , 3 7 , 8 2 , 6 4 , 12 7 , 3 8 , 5 4 , 12 7 , 7 6 , 5 2 , 4 3 , 8 8 , 6 2 , 6 4 , 4 3 , 8 2 , 13 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 23 1 , 27 5 , 3 9 , 9 7 , 1 3 , 1 1 , 2 3 , 2 10 8 , 1 7 , 1 7 , 1 4 , 3 2 , 7 7 , 1 1 , 1 10 7 , 1 1 , 9 2 , 1 1 , 8 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 24 1 , 2 3 , 3 2 , 2 7 , 1 70 10 5 , 4 20 1 , 1 10 2 , 2 2 , 2 3 , 1 1 , 21 8 , 1 1 , 1 7 , 1 10 2 , 2 3 , 3 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 25 7 , 1 20 3 , 3 7 , 0 3 , 3 8 , 1 5 , 0 2 , 30 20 10 1 , 2 1 , 1 1 , 30 5 , 0 20 7 , 1 7 , 1 20 9 , 9 7 , 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x № 26 10 1 , 1 3 , 1 1 , 1 3 , 1 2 , 1 3 , 1 2 , 1 3 , 3 5 , 3 1 , 1 3 , 1 3 , 1 10 10 2 , 2 2 , 1 1 , 1 3 , 1 7 , 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x Mustaqil ishlash bo’yicha savollar 1. Chiziqli tenglamalar sistemasini taqribiy yechish usullari necha turga bo’linadi? 2. Chiziqli tenglamalar sistemasi yechishning Gauss usulini tushuntirib bering. 3. Chiziqli tenglamalar sistemasi yechishda Gaussning bosh elementni tanlash usulini tushuntirib bering. 6. ZEYDEL USULI YoRDAMIDA ChIZIQLI ALGEBRAIK TENGLAMALAR SISTEMASINI TAQRIBIY YeChISh. Ishning maksadi: Oddiy iterasiya usulining modifikasiyasi xisoblangan Zeydel usuli yordamida chiziqli tenglamalar sistemasini taqribiy yechish; masalani yechish algoritmini tuzish va EHMda ijro etish. M A S A L A N I Q U R I Sh Faraz qilaylik quyidagi sistema berilgan bo’lsin: 1 1 2 12 1 11 ... b x a x a x a n n , 2 2 2 22 1 21 ... b x a x a x a n n , (3.1) ……………………….. n n nn n n b x a x a x a ... 2 2 1 1 . Takribiy yechish usullari orqali sistemaning yechimini aniqlaymiz (ya’ni shunday usullarni qo’llash lozimki hisoblashlarni yaxlitlanmasdan yechim n x x x ,..., , 2 1 ni ma’lum bir aniqlikda topish lozim). Agar (3.1) ning noma’lumlari soni ko’p bo’lsa, uning aniq yechimini topish qiyinlashadi. Bunday hollarda sistemaning yechimlarini topish uchun taqribiy usullardan foydalaniladi. Bu esa 244 yechimni topish vaqtini 20-30% kamaytiradi. Yaxlitlash xatoliklari esa aniq usullar yordamida yechganga qaraganda kamroq ta’sir qiladi, bundan tashqari hisoblash vaqtidagi xatoliklar yechimni topishning keyingi qadamida tuzatiladi. Algebraik tenglamalar sistemasini takribiy yechishning keng tarqalgan usullaridan biri Zeydel usulidan iboratdir. USULNING MAZMUNI Faraz kiliylik (3.1) sistema berilgan bo’lsin va undagi diogonal koeffisentlar noldan farqli bo’lsin, ya’ni n i a ii ,..., 2 , 1 0 . Sistemaning birinchi tenglamasini 1 x ga, ikkinchisini 2 x ga nisbatan yechib quyidagi sistemaga ega bo’lamiz. n n x x x x 1 3 13 2 12 1 1 ... , n n x x x x 2 3 23 2 22 2 2 ... (3.2) ……………………………… 1 1 , 2 2 1 1 ... n n n n n n n x x x x . Bu yerda ii ij ij ii i i a a d a b / , j i da va 0 ij , n j i j i ,..., 2 , 1 , da. (3.2) sistemani ketma-ket yakinlashish usulida yechamiz. Nolinchi yakinlashish sifatida 0 0 2 0 1 ,..., , n x x x larni shunday tanlaymizki, ular n x x x ,..., , 2 1 larga iloji boricha yaqin bo’lsin. Nolinchi yakinlashish sifatida ko’pchilik hollarda n x x x ,..., , 2 1 larning taqribiy qiymatlari olinadi. K-chi yakinlashishni ma’lum deb, (K+1) yakinlashishni quyidagi formula orqali aniqlaymiz. n j k j j k x x 1 1 1 1 1 ; n j k j j n j k j j i k x x x 2 1 1 1 1 1 1 ; (3.3) ,... 2 , 1 , 0 1 1 1 1 1 k x x x n j k n nn k j j n k Bu usulning mazmuni shundan iboratki, (K+1) chi yakinlashishda noma’lum i x ning ifodasida undan oldingi hadlarning (K+1) chi yaqinlashishlari ko’llaniladi. Bu keltirilgan yaqinlashishning zaruriy sharti quyidagi teorema orqali beriladi. Teorema. Agar (3.2) sistema uchun kuyidagi tengsizliklarning 1) n j ij 1 1 | | n i ,..., 2 , 1 yoki 2) n j ij 1 1 | | n i ,..., 2 , 1 birortasi bajarilsa (3.3) iterasiya jarayoni sistemaning yechimiga yakinlashadi va u nolinchi yaqinlashishga bog’liq bo’lmaydi. Natija: Quyidagi sistema uchun n j i j ij b x a 1 n i ,..., 2 , 1 iterasiya jarayoni yaqinlashuvchi bo’ladi, agarda n i a a j i ij ii ,..., 2 , 1 | | tengsizlik bajarilsa, ya’ni har bir tenglamada diogonal koeffisiyentlarning moduli qolgan boshqa koeffisiyentlar modullarining yig’indisidan katta bo’lsa( ozod hadlarni hisobga olmaganda). 245 Zeydel usulini qo’llab quyidagi sistemaning yechimini topaylik: 6 5 , 0 5 , 0 5 3 2 1 x x x ; 5 , 6 5 , 0 5 3 2 1 x x x ; (3.4) 7 5 3 2 1 x x x . Yechish: Berilgan sistemani (3.2) ko’rinishdagi sistemaga keltiramiz: 3 2 1 1 , 0 1 , 0 2 , 1 x x x ; 3 1 2 1 , 0 2 , 0 3 , 1 x x x ; 3 1 3 2 , 0 2 , 0 4 , 1 x x x . Haqiqitan ham bu sistema uchun zaruriy shart bajariladi: 2 1 2 1 2 1 1 4 , 0 | | , 1 3 , 0 | | , 1 2 , 0 | | j ij j ij j ij a a a Nolinchi yakinlashish sifatida . 4 , 1 ; 3 , 1 ; 2 , 1 0 3 0 2 0 1 x x x U holda Zeydel usulining keyingi yaqinlashishi quyidagicha bo’ladi: 9300 , 0 4 , 1 1 , 0 3 , 1 1 , 0 2 , 1 1 1 x ; 9740 , 0 4 , 1 1 , 0 9300 , 0 2 , 0 3 , 1 1 2 x ; 192 , 1 9740 , 0 2 , 0 9300 , 0 2 , 0 4 , 1 1 3 x ; K=2 bo’lganda 00068 , 1 0192 , 1 1 , 0 9740 , 0 1 , 0 2 , 1 2 1 x ; 997944 , 0 0192 , 1 1 , 0 00068 , 1 2 , 0 3 , 1 2 2 x ; 0002752 , 1 997944 , 0 2 , 0 00068 , 1 2 , 0 4 , 1 2 3 x ; Jadval 3.1 (3.4) sistema noma’lumlarining qiymatlari quyidagi jadvalda keltirilgan: K k x 1 k x 2 k x 3 0 1,2000 1,3000 1,4000 1 0,9300 0,9740 1,0192 2 1,0006 0,9979 1,0002 3 1,0001 0,9999 0,9999 4 1,0000 1,0000 0,9999 5 1,0000 1,0000 1,0000 6 1,0000 1,0000 1,0000 Bu yerda sistemaning haqiqiy yechimi quyidagichadir: . 1 ; 1 ; 1 3 2 1 x x x Download 5.01 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling