Birinchi darajali ko’p no’malumli tengsizliklar sistemasining no’manfiy yechimlari”


Download 1.76 Mb.
bet3/12
Sana03.02.2023
Hajmi1.76 Mb.
#1148184
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
Kurs ishi To`liq (2) KAMILA

Kurs ishi mavzusining vazifalari: 1.Oliy ta’lim muassasalarida “Matritsaning rangi haqidagi teorema va uning tatbiqlari” mavzusidagi darslarni tashkil etish.

  1. Matrisaning muhim sinflarining xossalarini o’rganib, ularni elementar masalalar yechishga tatbiq qilish.

Kurs ishi mavzusining mazmuni: Mazkur kurs ishi Kirish, 4ta asosiy qismdan, xulosa va adabiyotlardan tashkil qilinadi.


II.ASOSIY QISM
1.Chiziqli tengsizliklar sistemasi
1.Nuqtalar vektorlar ustida amallar.Tekislikda to’g’ri burchakli koordinatalar sistemasini qaraymiz. U holda tekislikdagi har bir M nuqtaga uning koordinatalari deb ataluvchi ikkita x va y haqiqiy son mos keladi va buni biz M(x,y) koʻrinishida belgilaymiz.
Nuqtalarni qo’shish va songa ko’paytirish amallarini vektorlardagi singari aniqlaymiz, ya’ni M1(x1,y1) va M2(x2,y2) nuqtalar berilgan bo’lsa, u holda M1+M2=(x1+x2,y1+y2) demak nuqtalarni qo’shish ularning bir xil rusumli koordinatalarini qo’shish bilan aniqlanadi.
M (x,y) nuqtani ixtiyoriy k soniga ko’paytirish KM=(kx1,ky1) qoida bilan aniqlanadi.
Bu amallar geometrik nuqtai nazardan juda sodda talqin qilinadi. Koordinatalar boshini O desak M1+M2 yig’indi OM1 va OM2 kesmalarga qurilgan parallellogramning to’rtinchi uchidan iborat.(1-shakl)

KM=M’ nuqta k>0 bo’lsa OM nurda yotadi, agarda k<0 bo’lsa nurning to’ldiruvchi qismida yotadi va OM’=|k| OM bo’ladi (2-shakl).


Nuqtalar ustida amallarni bunday aniqlash ba’zi geometrik tasdiqlarni algebra tiliga ko’rishga qulay. Ba’zi bir misollar keliramiz.
1) M1M2 kesma S1M1+S2M2 ko’rinishdagi barcha nuqtalardan tashkil topgan. Bunda S1,S2 ixtiyoriy S1+S2=1 shartni qanoatlantiruvchi manfiy bo’lmagan sonlar.
Bu tasdiqni isbotlash uchun M1M2 kesmadagi ixtiyoriy M nuqtani qaraymiz.M nuqtadan OM1 va OM2 larga parallel to’g’ri chiziqlar o’tkazib OM1 kesmada N1 va OM2 kesmada N2 nuqtalarni hosil qilamiz.(3-shakl)
Faraz qilaylik:
S1= , S2=
Sonlar manfiy bo’magan sonlar bo’lib S1+S2=1 bo’ladi.

Shakldagi uchburchaklarning o’xshashligidan


= , =S1 , = , =S2
bo’ladi. Bulardan N1=S1M1, N2=S2 M2 va M=N1+N2 bo’lgani uchun M=S1M1+S2M2.
Bu yerda agar M1 M2 kesmada M1 da M2 ga qarab o’zgarganda S2 esa 0 dan 1gacha qiymatlarni qabul qiladi. Shunday qilib 1-tasdiq isbotlandi.
2)M1M2 to’g’ri chiziqning ixtiyoriy nuqtasi M ni tM1+(1-t) M2 ko’rinishda ifodalash mumkin, bunda t – biror son.
Haqiqatdan ham, agart M nuqta M1M2 kesmada yotsa bu tasdiq yuqorida isbotlangan 1-tasdiqdan kelib chiqadi. Endi faraz qilaylik M nuqta M1M2 kesmadan tashqarida yotsin. U holda M1 nuqta MM2 kesmaga tegishli bo’ladi. Aniqlik uchun faraz qilaylik 1-hol bo’lsin. U holda isbotlanganiga asosan M1=SM+(1-S) M2, (0Bundan
M= M1- M2=tM1+(1-t) M2, t=
Ikkinchi hol ham xuddi shuningdek isbotlandi va uni tinglovchilarga mustaqil topshiriq sifatida berish mumkin.
3) parametr S 0 dan gacha o’sib o’zgarganda SB nuqta OB nurda (bunda B nuqta koordinatalar boshidan farqli deb qaraladi). A+SB nuqta esa A nuqtadan chiquvchi OB nuqtadagi nurda o’zgaradi. (5-shakl)
S parametr 0 dan - gacha o’zgarganda SB va A+SB nuqtalar yuqoridagi aytilgan nurlarni to’ldiruvchi nurlarda o’zgaradi. (6-shakl)

Isboti: 5 va 6-shakllardan bevosita kelib chiqadi.
3-tasdiqdan kelib chiqadiki S parametr - dan + gacha o’zgarganda A+SB nuqta A nuqtadan o’tuvchi va OB ga parallel to’g’ri chiziqdagi nuqtalarda o’zgaradi.
Qo’shish va songa ko’paytirish amallarni fazodagi nuqtalar ustida ham bajarish mumkin.
Bu holda:
M1+M2=(x1+x2,y1+y2,z1+z2),
KM=(kx, ky, kz)
K va L nuqtalar to’plamining yig’indisi K+L deganda K+L ko’rinishdagi barcha nuqtalar to’plamiga aytiladi, ya’ni K+L={k+l/ k K, L l}.
Bir nechta misollar qaraylik.
1. K to’plam faqat bitta nuqtadan L esa ixtiyoriy nuqtalar to’plamidan iborat bo’lsin. U holda K+L to’plam L to’plamni OK masofa (uzunligi OK kesmaning uzunligiga teng masofaga) ko’chirish natijasida hosil bo’lgan to’plamga teng (7-shakl).

Xususiy holda L to’g’ri chiziqdagi nuqtalar to’plami bo’lsa, K+L to’plam L to’g’ri chiziqdan OK masofadan o’tuvchi L1 ga parallel to’g’ri chiziqdagi nuqtalar to’plami bo’ladi.(8-shakl).
2. K va L lar (fazodagi yoki tekislikdagi parallel bo’lmagan kesmalardagi nuqtalar to’plami bo’lsin. U holda K+ L to’plam tomonlari mos ravishda K va L to’plam tomonlari mos ravishda K va L larga teng va parallel parallellogramdan iborat bo’ladi. (9-shakl)

3.K-tekislik L unga parallel bo’lmagan kesma bo’lsin. U holda K+ L to’plam fazoning K ga parallel 2ta tekisligi orasidagi qismi bo’ladi. (10-shakl)
4.K va L lar markazlari P1 va P2 nuqtalarda radiuslarda mos ravishda r1 va r2 ga teng, bunda π tekislikda yotuvchi doiralar bo’lsin. U holda K+ L to’plam markazi P1+P2 nuqtalarda radiusi r1+r2 teng π tekislikka parallel tekislikda yotuvchi doiradan iborat bo’ladi. (11-shakl)


Download 1.76 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling