Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
of Mathematical Education in Science and Technology, 16(4), 469-477.
Damerow, P., Dunkley, M. E., Nebres, B. F., & Werry, B. (Eds.). (1984). Mathematics for all. Science and Technology Document Series 20 (pp. 1-109). Paris: UNESCO. Department of Education and Science (Welsh Office, Committee of Inquiry into the Teaching of Mathematics in Schools) (1982). Mathematics counts (The Cockcroft Report). London: Her Majesty's Stationary Office. Friedman, A. (1988-1990). Mathematics in industrial problems (Parts 1-3). The IMA vol- umes in mathematics and its applications 16, 24, 31. New York: Springer. Howson, A. G., Kahane, J.-P., Lauginie, P., & de Turckheim, E. (Eds.). (1988). Mathema- tics as a service subject (ICMI Study Series). Cambridge: Cambridge University Press. Keitel, C., Damerow, P., Bishop, A., & Gerdes, P. (Eds.). (1989). Mathematics, education, and society. Science and Technology Document Series 35. Paris: UNESCO. Khoury, S. J., & Parsons, T. D. (1981). Mathematical methods in finance and economics. New York: Elsevier North Holland. Morris, R. (Ed.). (1981) Studies in mathematics education 2. Paris: UNESCO. Niss, M. (1979). Om folkeskolelæreruddannelsen i det vigtige fag matematik. In P. Bollerslev (Ed.), Den ny matematik i Danmark. En essaysamling. Copenhagen: Gyldendal. Niss, M. (1981). Goals as a reflection of the needs of society. In R. Morris (Ed.), Studies in mathematics education 2 (pp. 1-21). Paris: UNESCO. Niss, M. (1985). Mathematical education for the "automatical society". In R. Schaper (Ed.), Hochschuldidaktik der Mathematik. Alsbach-Bergstrasse: Leuchtturm-Verlag. Nissen, G. (1993). Der Mathematik aus ihrer Isolation heraushelfen - Bericht über das dänische Projekt 'Mathematikunterricht und Demokratie'. In H. Schumann (Ed.), Beiträge zum Mathematikunterricht, 1992 (pp. 35-41). Hildesheim: Verlag Franzbecker. Rosen, R. (Ed.). (1972-1973). Foundations of mathematical biology (Vols. 1-3). New York: Academic Press Skovsmose, O. (1992). Democratic competence and reflective knowing in mathematics. For the Learning of Mathematics, 12(2), 2-11. Snow. C. P. (1959). The two cultures and the scientific revolution. Cambridge: Cambridge University Press. [An expanded version is (1964) The two cultures: a second look. Cambridge: Cambridge University Press]. Steen, L. A. (Ed.). (1978). Mathematics today. Twelve informal essays. New York: Springer. Wan, F. Y. M. (1989). Mathematical models and their analysis. New York: Harper & Row. Wigner, E. P. (1960). The unreasonable effectiveness of mathematics in the natural sci- ences. Communications on Pure & Applied Mathematics, 13,1-14. 378 MATHEMATICS IN SOCIETY This is where the implementation problem and the art of mathematical pedagogy manifest themselves and lead us to other places and other stories. No miraculous cure has been (or will be) found that can dissolve all the dif- ficulties inherent in the learning and teaching of mathematics. There is, however, still much new land for us to explore and to reclaim if we want to provide a better and richer set of multi-dimensional and reflective mathe- matical qualifications to everybody in society, with the ultimate end of serv- ing its democratical development. THE REPRESENTATIONAL ROLES OF TECHNOLOGY IN CONNECTING MATHEMATICS WITH AUTHENTIC EXPERIENCE James J. Kaput North Dartmouth 1. INTRODUCTION This paper is an account of issues and opportunities associated with new, technologically based attempts to attack a central didactic problem of math- ematics education: creating viable, functional connections between the world of authentic human experience and the formal systems of mathemat- ics. These new attempts take the form of changes to the historically received representation systems, the introduction of new systems, and the dynamic linking of different systems. A companion problem, the elevation of levels of thinking involved in the doing of mathematics from low-level computa- tion to higher level planning, strategic and structural thinking, is treated in another paper (Kaput, in press b). At the end of the paper, I will try to point out some of the unmet challenges in exploiting electronic technologies in the representational realm – a realm distinct from, for example, the use of artificial intelligence or the execution of massive computations. But, in order to expose what is new, I will first examine features of the inherited systems and the traditional didactic approaches to these problems. I hope to bring to consciousness, to render explicit, certain of the grand, but tacit, strategies that have been, or can be used. And in order to do this, I shall briefly establish a framework for the discussion, some background lay- ing out a strongly interactivist perspective on the relations between mental and physical structures and operations on these. More extended versions can be found in Kaput (1989, 1991, 1992), which also include references to the wider literature relating to these topics. 1.1 Background: The Interactive Perspective I draw a distinction between two sources of structure in mathematical expe- rience: mental and physical. Neither can be formed or be utilized without in- teraction with the other – although, with the use of mental structures, this in- teraction might well be delayed considerably in the sense that extensive mental operations can take place apart from direct physical activity. The R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling