Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet148/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   144   145   146   147   148   149   150   151   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

 simulation replaces text-like descriptions of a situation by an actual
physically manipulable surrogate situation that is usually bidirectionally
connected to more formal representations at the physical level.
3.3. “Lived-ln” Simulations: An Extended Scenario
“Lived-in” simulations are where the attack on the Island Problem reaches
its most direct form. Perhaps the easiest way to describe this approach is to
offer a scenario involving motion simulations that amount to user-control-
lable linked representations of motion. A video animation of parts of the
scenario has been developed (Kaput, 1993).
Imagine a pair of 12-year-old students driving a computer-simulated ve-
hicle that provides a windshield view and a carefully linked user- or system-
configurable collection of data displays for the dashboard; one set of dis-
plays for time, another for velocity, and a third for position. These include
sounds for each set (metronome for time, engine pitch for velocity, and
“echo” when passing roadside objects for position). The dashboard display
can include velocity and/or position versus time graphs generated in “real-
time” as well as clocks, odometers, tables, and so forth. This “MathCars”
system is designed to help link the phenomenologically rich everyday ex-
perience of motion in a vehicle to more structured and formal representa-
tions and to provide exciting and intensely experienced contexts for reason-
ing about change, accumulation, and relations between them.
After some unstructured driving trips, they are now planning to follow a
school bus whose (highly variable) velocity has been specified beforehand
based on (one-dimensional) velocity data they collected on their own bus
trip home the day before, using a graphing calculator to store the data. They
had estimated their velocity and entered it as discrete points on a coordinate
graph while tracking time with the calculator’s built-in watch. They then
connected the dots (with appropriate curve-fitting) last night and down-
loaded this data to the simulation. As an interesting challenge, they are now
following the bus while driving “blind” (or, if you prefer, under IDR – “In-
strument Driving Rules”), with feedback only on their own velocity graph
and the bus’s position graph, which appears in place of the windshield
(thereby enacting the core relationship expressed by the Fundamental Theo-
rem of Calculus). After two rear-end collisions and after reviewing their
notes on the real trip, they decided to display their own position graph on
the next try, which is now plotted on the same coordinate axes as the bus’s
position graph. They could also have chosen to turn on the windshield view
and drive at a safe distance behind under visual driving rules (VDR). They
could then review the velocity and position graphs that result before at-
tempting another IDR trip. They could also attempt to drive in front of the
bus, using the rearview mirror, or in IDR mode. They could get more adven-
turous and drive in other relations to the bus, for example, passing it in order
stay one stop ahead. An especially interesting possibility suggested by the
JAMES J. KAPUT
391


REPRESENTATION AND AUTHENTIC EXPERIENCE
teacher is to drive home in the other lane at constant velocity without any
stops to arrive home at the same time as the bus, thereby developing the
idea of average velocity and enacting the conclusion of the Mean Value
Theorem. After the student Chris asserts that you must always “hit” the av-
erage velocity for a trip, no matter how the velocity varies, the teacher leads
a class discussion centered on the classroom display, in which different stu-
dents try to violate “Chris’s Law.”
Other students have collected data on the subway, estimating (one-di-
mensional) velocities based on combining time data that they collected from
actual trips with distance data that they obtained from city maps. They are
now imagining themselves as subway train operators while using the sub-
way simulation (there are several windshield views to choose from). Other
students are taking turns riding the MathBike – a stationary bike that col-
lects both motion information and pulse rate data. In trying to decide how to
measure aerobic conditioning, they are plotting and attempting to interpret
such curves as pulse versus time, (pulse minus resting pulse) versus time,
and, most interestingly, pulse versus velocity. Another group is testing the
assertion that, no matter how you vary your speed, your total number of
heartbeats for a given distance will be pretty much the same.
Later, they will be driving some simple MathCars trips (linear position or
velocity) in ADR mode (“Algebra Driving Rules”) in which the motion is
specified algebraically, and they will be attempting to match algebraically
defined motion by driving under VDR, and the reverse. They will also set
up and run simulated “ToyCars” on parallel tracks to study relative motion
more systematically, describing the motion of each algebraically, con-
fronting such questions as how to describe a later start versus describing a
simultaneous start but from different locations; how to describe motion in
opposite directions, both in terms of velocity and position; how to
determine when or where cars going in opposite directions will meet; or
when or where cars going in the same direction will pass; and so on. Of
course, they will test and revise their models (essentially, parametric
equations) by literally running them on the computer.
They will examine the difference between increasing velocity graphs that
are concave-up and those that are concave-down. Given two cars reaching
60 miles per hour in the same amount of time, one with a concave-up veloc-
ity graph and the other with a concave-down graph, do they go the same dis-
tance, and if not, can we estimate the difference? Again, they will test their
models by literally running them on the computer, making measurements of
distances and estimating areas, and so forth. They will compare this motion
situation with that of pay raises – given the same ending pay rate, does it
make a difference whether your pay-rate graph is concave-up or concave-
down, that is, is it better to get pay raises early or later?
And, on-line, they will be able to examine accumulation of fluid as they
control the flow rate, using virtually the same interface and forms of data
392


feedback that they used to control and record motion – in which the wind-
shield view is replaced by a vessel that fills and empties, and flow rate is
monitored in a visually and auditorially appropriate manner. Eventually,
they will examine also the question of accumulating interest, simple and
compound; accumulation of toxic wastes at different rates; deficit growth;
and so forth, by redefining the quantities whose rates and accumulations are
being examined. Some students, excited by driving what amounts to linear
motion, opt to attempt driving in two dimensions, where they now control
both north/south and east/west acceleration. They watch both acceleration
and velocity vectors respond to their input, as well as their position depicted
on an aerial (map) view. They extend what they have learned by specifying
motion in one dimension to parametrically defined motion in two and, later,
even three dimensions. They will also be able to examine regular motion of
various types: especially harmonic and other periodic motion, and so forth,
by attempting to produce it through driving as well as through MBL devices
– approaching the trigonometric functions as they were developed histori-
cally, as means for describing real phenomena. Students will have available
visual methods for approximating (what they will at a certain point refer to
as) derivatives and antiderivatives, and so on. These will precede and com-
plement the strictly algebraic methods available today that apply to func-
tions defined by algebraically closed-form formulas. They will be learning

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   144   145   146   147   148   149   150   151   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling