Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet149/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   145   146   147   148   149   150   151   152   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

calculus before, during, and after algebra.
3.4. Reflections on the Scenario and the Linking of Representations
A few features of the scenario (which involves simulations and activities
designed by the author and under development) deserve further attention.
First of all, it reflects an underlying reformulation of the subject matter of
calculus in the spirit of Kaput (in press) and Nemirovsky (1993). This re-
formulation regards calculus as a strand in the curriculum beginning in the
early grades and continuing through the school years through a gradual pro-
cess of formalization and elaboration. Calculus, as the mathematics of
change and accumulation of quantity, is conceived as anchored in and
growing from everyday experience and also as the context in which much
other mathematics can and should be learned, including mathematics such
as algebra, which has historically acted as a prerequisite. However, the criti-
cal point here is that the linking technology (after all, the windshield view is
just another linked representation of the simulated motion) and the phe-
nomenological richness of the simulations are regarded as the critical en-
abling features of the scenario. While activity structures are important, the
ability to connect these structures to more formal representations in “real”
time is something new, unavailable before computers with substantial pro-
cessing and display capabilities.
At a more detailed level, the reader will notice the depth of the connec-
tions between significant mathematical actions – comparison of functions –
JAMES J. KAPUT
393


REPRESENTATION AND AUTHENTIC EXPERIENCE
across representation systems. The windshield view and accelerator embody
a certain form of those actions borrowed from the authentic activity of driv-
ing, while the formal version of those comparison actions in the graphs are
very different. The act of comparing functions in formal representations is
not easy, although, as envisioned here, it is tightly anchored to driving a
certain distance from the school bus, and one can imagine putting further
constraints on the situation so that the students would need to maintain the
distance between their car and the bus between particular bounds, reflected,
perhaps, in a certain band on the position-function graph. Of course, a major
question is whether the strongly situated forms of these activities can yield
widely applicable knowledge, whether the “horizontal” linkages of actions
(in the sense of Figure 3) at the physical level can yield flexible structures at
the mental level. The current work of the author assumes that this will not
come easily, but will need to be built systematically through combinations
of careful variations of the simulations themselves and physical activities
distinct from simulations, including work with MBL devices. One must
never forget that a particular action is an embodiment or an illustration of a
general relationship only for those who already cognitively have that
relationship. For those who do not, it is merely one more action.
4. THE CONTINUING EVOLUTION OF REPRESENTATIONAL
OPPORTUNITIES
I shall close with a broader perspective on the representational issues dis-
cussed in this chapter – what is really happening in these newer interactive
media, and what are some of the challenges facing those who would exploit
them?
4.1 Redistributing Sources of Structure and Action From the Mental
to the Physical Realms
One can view the long-term historic development of physical notation sys-
tems, especially action systems, as a redistribution of the source of structure
of activity from the mental to the physical realm. Recalling my earlier point,
that mathematical activity involves tight cyclical interactions between the
mental and physical, important shifts take place when one introduces new
structures in the physical material with which one is interacting. In a novice
learner, these shifts are by no means automatic. They require extended in-
teractions leading to assimilations and accommodations wherein constraints
and supports embodied in the physical structure are gradually internalized as
mental structure. The movement from oral to written culture illustrates the
point most vividly – structure could now be “stored” outside the human
cortex, although it does not exist or function as structure apart from an ap-
propriately structured mind.
Similarly, the development of algebra as an action notation system made
possible the inheritance of powerful means of quantitative reasoning, and
394


Leibniz’ notations for calculus likewise made available an immensely pow-
erful system of thought. In some sense, the most potent intellectual contri-
butions, leading to cultural inheritances, are embedded in these “ways of
worldmaking,” to borrow Nelson Goodman’s phrase (Goodman, 1978).
Some of the most important work of the masters is embodied and handed
down, not in the form of facts or even theorems and principles, but rather in
the syntax of the representation systems that they enable us to think with.
4.2 The Subtle and Fluid Nature of Representational Activity:
Challenges of Representational Uses of Technology
Recent work by Hall (1990) and Miera (1990, 1991, in press), together with
close examination by the author of student problem-solving in multiplica-
tive contexts, exposes a level of subtlety and fluidity in student production
of representations that may be difficult to accommodate in traditional styles
of computer-based representational activity. Microanalysis of much repre-
sentational activity, of which the above references supply abundant exam-
ples, reveals that representational elements change their referential mean-
ings over time – the same inscription comes to be used in a new way as it is
elaborated a minute later and becomes part of a larger whole and as either
the mental structures evolve or as the producer’s intentions change. Hall
(1990) defines what he calls a “representational niche” – an evolving orga-
nization of inscriptions that affords computations and inferences that the
user would not be able to make without those affordances. Such contain
“slots” for variables that the user often manipulates and recombines or even
abandons as activity progresses. All of this is deeply embedded in activity
and communication and cannot be considered apart from its embeddedness.
And it involves free student production of their own notations rather than
the employment of complete, coherent structured systems developed by
others.
Furthermore, particularly when modeling activity is involved, with physi-
cal materials in a group situation, then reference tends to become distributed
across the notations, the physical material, the conversation, and the short-
term memories of the participants, all in a very fluid, changing manner. The
modeling and problem-solving is constituted from negotiating this “fluid.”
Aside from the challenges of building coherent accounts of such complex
activity, one is forced to ask how the inherent structures of most computer-
based approaches to representation, including those discussed earlier in this
paper, may constrain, distort, shortcut, or undermine these productive pro-
cesses. These remarks are in close alignment with the perspective offered by
Lesh (this volume). The author wonders, with some trepidation, whether the
egregious oversimplifications of artificial intelligence and the ways that
these interlocked with the technology constraints might be repeated as we
now deliberately attempt to use technology to augment human capability
and learning in the representational dimension. So we are faced with yet
JAMES J. KAPUT
395


another version of the eternal question: How much to “give” students
(notational structures in this case) and how much to enable them to
construct on their own? And the answer may, as usual, be a compromise,
because, after all, student time and intellectual resources are limited, and
they simply cannot produce, within the genuine constraints of schools and
schooling, what required the greatest minds of civilization centuries of
accumulated effort to produce. We need to identify the genuinely important
and widely applicable representational strategies and find ways to cause
students to build these as general, but personal intellectual resources.
Looking more specifically at the role of electronic technologies, we must
be careful in exploiting the representational potential of these technologies
not to produce another version of the oversimplification errors of the artifi-
cial intelligence community. They adopted models of mind and of mathe-
matical activity that were grossly oversimplified versions of actual minds in
actual practice, and have, by and large, had only marginal impact on real
education, despite two decades of effort. We cannot afford to ignore the real
subtlety and complexity of authentic human experience.
396
REPRESENTATION AND AUTHENTIC EXPERIENCE
REFERENCES
Bochner, S. (1966). The role of mathematics in the rise of science. Princeton, NJ: Princeton
University Press.
Cajori, F. (1929a). A history of mathematical notations. Vol. 1: Notations in elementary

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   145   146   147   148   149   150   151   152   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling