Chemistry and catalysis advances in organometallic chemistry and catalysis
, 43 , 2498. REFERENCES 197
Download 11.05 Mb. Pdf ko'rish
|
2004, 43 , 2498. REFERENCES 197 21. (a) Chavez, P.; Guerrero Rios, I.; Kermagoret, A.; Pattacini, R.; Meli, A.; Bianchini, C.; Giambastiani, G.; Braunstein, P. Organometallics, 2009, 28 , 1776–1784; (b) Flapper, J.; Kooijman, H.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M.; Elsevier, C. J.; Kamer, P. C. J. Organometallics, 2009, 28 , 3272. 22. (a) von Matt, P.; Pfaltz, A. Angew. Chem. Int. Ed. 1993, 32 , 566; (b) Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J.
23. Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128 , 12886. 24. Schrock, R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42 , 4592. 25. For a review, see: Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36 , 659. 26. (a) Li, J.-Q.; Quan, X.; Andersson, P. G. Chem. Eur. J. 2012, 18 , 10609; (b) Li, J.-Q.; Paptchikhine, A.; Govender, T.; Andersson, P. G. Tetrahedron: Asymmetry 2010, 21 , 1328; (c) Paptchikhine, A.; Cheruku, P.; Engman, M.; Andersson, P. G. Chem. Commun. 2009, 5996; (d) Trifonova, A.; Diesen, J. S.; Andersson, P. G. Chem. Eur. J. 2006, 12 , 2318. 27. (a) Burrows, A. D.; Mahon, M. F.; Varrone, M. Inorg. Chim. Acta 2003, 350 , 152; (b) Cozzi, P. G.; Zimmermann, N.; Hilgraf, R.; Schaffner, S.; Pfaltz, A. Adv. Syn. Catal. 2001, 343 , 450. 28. See e.g.: Blanc, C.; Agbossou-Niedercorn, F.; Nowogrocki, G. Tetrahedron: Asymmetry 2004, 15 , 2159. 29. See e.g.: Xu, G.; Gilbertson, S. R. Tetrahedron Lett. 2003, 44 , 953. 30. See e.g.: Chakka, S. K.; Peters, B. K.; Andersson, P. G.; Maguire, G. E. M.; Kruger, H. G.; Govender, T. Tetrahedron: Asymmetry 2010, 21 , 2295. 31. Gilbertson, S. R.; Fu, Z. Org. Lett. 2001, 3 , 161. 32. Rubina, M.; Sherrill, W. M.; Rubin, M. Organometallics 2008, 27 , 6393. 33. Cozzi, P. G.; Menges, F.; Kaiser, S. Synlett 2003, 833. 34. See e.g.: Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Syn. Catal. 2004, 346 , 909. 35. For a review, see: Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248 , 2201. 36. See e.g.: Onodera, G.; Nishibayashi, Y.; Uemura, S. Angew. Chem. Int. Ed. 2006, 45 , 3819. 37. Nishibayashi, Y.; Yamauchi, A.; Onodera, G.; Uemura, S. J. Org. Chem. 2003, 68 , 5875. 38. See e.g.: Geisler, F. M.; Helmchen, G. J. Org. Chem. 2006, 71 , 2486. 39. See e.g.: Tu, T.; Deng, W. -P.; Hou, X.-L.; Dai, L.-X.; Dong, X.-C. Chem.-Eur. J. 2003, 9 , 3073. 40. See e.g.: Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y. -D. Angew. Chem. Int. Ed. 2006, 45 , 1979. 41. (a) Gavrilov, K. N.; Tsarev, V. N.; Konkin, S. I.; Lyubimov, S. E.; Korlyukov, A. A.; Antipin, M. Y.; Davankov, V. A. Eur. J. Inorg. Chem. 2005, 3311; (b) Polosukhin, A. I.; Bondarev, O. G.; Lyubimov, S. E.; Korostylev, A. V.; Lyssenko, K. A.; Davankov, V. A.; Gavrilov, K. N. Tetrahedron: Asymmetry 2001, 12 , 2197. 42. (a) Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D.-R.; Reibenspies, J. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125 , 113; (b) Hou, D.-R.; Reibenspies, J.; Colacot, T. J.; Burgess, K. Chem.-Eur. J. 2001, 7 , 5391; (c) Hou, D.-R; Reibenspies, J. H.; Burgess, K. J. Org. Chem. 2001, 66 , 206. 43. Liu, D.; Tang, W.; Zhang, X. Org. Lett. 2004, 6 , 513. 44. (a) Mazuela, J.; Verendel, J. J.; Coll, M.; Schaffner, B.; Borner, A.; Andersson, P. G.; Pamies, O.; Dieguez, M. J. Am. Chem. Soc.
Dieguez, M.; Pamies, O. Chem.-Eur. J. 2008, 14 , 3653; (d) Gavrilov, K. N.; Bondarev, O. G.; Tsarev, V. N.; Shiryaev, A. A.; Lyubimov, S. E.; Kucherenko, A. S.; Davankov, V. A. Russ. Chem. Bull. 2003, 52 , 122. 45. Franco, D.; Gomez, M.; Jimenez, F.; Muller, G.; Rocamora, M.; Maestro, M. A.; Mahia, J. Organometallics 2004, 23 , 3197. 46. Selected references: (a) Mazuela, J.; Paptchikhine, A.; Pamies, O.; Andersson, P. G.; Dieguez, M. Chem.-Eur. J. 2010, 16 , 4567; (b) Mazuela, J.; Paptchikhine, A.; Tolstoy, P.; Pamies, O.; Dieguez, M.; Andersson, P. G. Chem.-Eur. J. 2010, 16 , 620; (c) Dieguez, M.; Mazuela, J.; Pamies, O.; Verendel, J. J.; Andersson, P. G. J. Am. Chem. Soc. 2008, 130 , 7208; (d) Cheruku, P.; Gohil, S.; Andersson, P. G. Org. Lett. 2007, 9 , 1659; (e) Hedberg, C.; Kaellstroem, K.; Brandt, P.; Hansen, L. K.; Andersson, P. G. J. Am. Chem. Soc. 2006, 128 , 2995; (f) Liu, D.; Dai, Q.; Zhang, X. Tetrahedron 2005, 61 , 6460; (g) Hashizume, T.; Yonehara, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2000, 65 , 5197. (h) Yonehara, K.; Mori, K.; Hashizume, T.; Chung, K. G.; Ohe, K.; Uemura, S. J. Organomet. Chem. 2000, 603 , 40. 47. See e.g.: Lu, W.-J.; Chen, Y.-W.; Hou, X.-L. Angew. Chem. Int. Ed. 2008, 47 , 10133. 48. See e.g.: Wu, W.-Q.; Peng, Q.; Dong, D.-X.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2008, 130 , 9717. 49. Deng, H.-P.; Wei, Y.; Shi, M. Adv. Syn. Catal. 2009, 351 , 2897. 50. See e.g.: Tian, F.; Yao, D.; Liu, Y.; Xie, F; Zhang, W. Adv. Syn. Catal. 2010, 352 , 1841. 51. (a) Li, S.; Zhu, S.-F.; Xie, J.-H.; Song, S.; Zhang, C.-M.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132 , 1172;(b) Li, S.; Zhu, S.-F.; Zhang, C.-M.; Song, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130 , 8584.
198 COORDINATION CHEMISTRY OF OXAZOLINE/THIAZOLINE-BASED P,N LIGANDS 52. (a) Broring, M.; Kleeberg, C. Chem. Commun. 2008, 2777; (b) Gao, L.-H.; Guan, M.; Wang, K.-Z.; Jin, L.-P.; Huang, C.-H. Eur. J.
53. (a) Mague, J. T. J. Cluster Sci. 1995, 6 , 217; (b) Puddephatt, R. J. Chem. Soc. Rev. 1983, 12 , 99. 54. Ruiz, J.; Mosquera, M. E. G.; Garcia, G.; Marquinez, F.; Riera, V. Angew. Chem. Int. Ed. 2005, 44 , 102. 55. Mosquera, M. E. G.; Ruiz, J.; Garcia, G.; Marquinez, F. Chem.-Eur. J. 2006, 12 , 7706. 56. Pickaert, G.; Douce, L.; Ziessel, R.; Cesario, M. Chem. Commun. 2000, 1125. 57. Ruiz, J.; Riera, V.; Vivanco, M.; Lanfranchi, M.; Tiripicchio, A. Organometallics 1998, 17 , 3835. 58. (a) Mague, J. T.; Krinsky, J. L. Inorg. Chem. 2001, 40 , 1962; (b) Mague, J. T.; Hawbaker, S. W. J. Chem. Crystallogr. 1997, 27 , 603; (c) Mague, J. T.; Johnson, M. P. Organometallics 1990, 9 , 1254; (d) Mattson, B. M.; Ito, L. N. Organometallics 1989, 8 , 391; (e) McNair, R. J.; Pignolet, L. H. Inorg. Chem. 1986, 25 , 4717; (f) McNair, R. J.; Nilsson, P. V.; Pignolet, L. H. Inorg. Chem. 1985,
Mattson, B. M.; Pignolet, L. H. Inorg. Chem. 1983, 22 , 2644; (i) Anderson, M. P.; Pignolet, L. H. Organometallics 1983, 2 , 1246; (j) Nelson, S. M.; Perks, M.; Walker, B. J. J. Chem. Soc., Perkin Trans. 1976, 1 , 1205; (k) Dahlhoff, W. V.; Dick, T. R.; Ford, G. H.; Kelly, W. S. J.; Nelson, S. M. J. Chem. Soc. A 1971, 3495. 59. Zhang, S.; Pattacini, R.; Braunstein, P. Inorg. Chem. 2011, 50 , 3511. 60. For recent examples, see: (a) Zhou, T.; Peters, B.; Maldonado, M. F.; Govender, T.; Andersson, P. G. J. Am. Chem. Soc. 2012, 134 , 13592; (b) Cao, T.; Deitch, J.; Linton, E. C.; Kozlowski, M. C. Angew. Chem. Int. Ed. 2012, 51 , 2448; (c) Gazic, S. I.; Casas-Arce, E.; Roseblade, S. J.; Nettekoven, U.; Zanotti-Gerosa, A.; Kovacevic, M.; Casar, Z. Angew. Chem. Int. Ed. 2012, 51 , 1014; (d) Weise, C. F.; Pischl, M. C.; Pfaltz, A.; Schneider, C. J. Org. Chem. 2012, 77 , 1477; (e) Maurer, F.; Huch, V.; Ullrich, A.; Kazmaier, U. J.
Newton, S.; Ley, S. V.; Arce, E. C.; Grainger, D. M. Adv. Syn. Catal. 2012, 354 , 1805; (h) Verevkin, S. P.; Emel’yanenko, V. N.; Bayardon, J.; Schaeffner, B.; Baumann, W.; Boerner, A. Ind. Eng. Chem. Res. 2012, 51 , 126; (i) Shang, J.; Han, Z.; Li, Y.; Wang, Z.; Ding, K. Chem. Commun. 2012, 48 , 5172; (j) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed. 2012, 51 , 936. 15 “CLICK” COPPER CATALYZED AZIDE–ALKYNE CYCLOADDITION (CuAAC) IN AQUEOUS MEDIUM Joaqu´ın Garc´ıa- ´ Alvarez and Jos´e Gimeno*
Since the independent discovery by Meldal, Sharpless, and coworkers [1] of the regioselective copper(I) catalyzed 1,3-dipolar cycloaddition of organic azides and terminal alkynes (CuAAC) rendering 1,2,3-triazoles, the applications of this process have grown tremendously. In contrast to the classical Huisgen cycloadditions, which proceed slowly under thermal conditions to give a mixture of regioisomers A + B (see Scheme 15.1) [2], CuAAC dramatically accelerates the reaction rate to give exclusively disubstituted 1,4-triazoles A that are formed rapidly even at room temperature [3]. Because of its efficiency, atom economy, and wide chemical applications in many fields [4], CuAAC is considered one of the most genuine examples of “Click Chemistry” [5]. Although, in fact, a copper-free methodology has also been reported [6], to date only copper catalysis has disclosed an efficient and selective synthetic approach fulfilling the “Click” philosophy [7]. Classical catalysts are often generated in situ from a copper(II) salt in the presence of a reducing agent (usually sodium ascorbate). To avoid the intrinsic instability of the resulting copper(I) species, the addition of ligands is often used, which not only stabilizes the metal ion but also improves the catalytic efficiency. In particular, significant developments have been achieved by using N-polydentate ligands, which allow smooth reaction conditions and extensive applicability [8]. Nevertheless, several drawbacks are associated with these catalytic systems mainly arising from the oxidation in the presence of air, the use of an excess of the ligand, and, occasionally, metal leaching. Although still scarcely used, preformed catalysts may overcome these limitations and a series of very active copper(I) complexes containing nitrogen [8, 9], sulfur [10], Phosphorous [11, 12], N-heterocyclic carbene (NHC) [13], and oxygen [14] donor ligands have been shown to be active catalysts in CuAAC transformations [15]. Despite the enhanced reactivity and regioselectivity of many organic reactions in aqueous media, surprisingly, only a few CuAAC reactions have been performed in this reaction media. This chapter provides an overview of these type of catalytic systems, and, particularly, addressing attention to those using well-defined copper(I) catalysts [16]. 15.2 CuAAC: ORGANIC SOLVENTS VERSUS AQUEOUS MEDIA The use of organic solvents as reaction media dominate in CuAAC reactions. However, several examples have been described that proceed in mixtures of organic solvents and water (i.e., tBuOH/water [9a, 17], MeOH/water [18], dimethyl sulfoxide (DMSO)/water [8c, 19], MeCN/water [20], or tetrahydrofuran (THF)/water [13g,i]). In addition, several catalytic systems, Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, First Edition. Edited by Armando J. L. Pombeiro. © 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
200 “CLICK” COPPER CATALYZED AZIDE–ALKYNE CYCLOADDITION (CUAAC) IN AQUEOUS MEDIUM Scheme 15.1 1,3-Dipolar cycloaddition of azides and terminal alkynes through Huisgen or CuAAC reactions. Scheme 15.2 CuBr/PhSMe-catalyzed cycloaddition of aliphatic, acrylic, or sulfonyl azides with terminal alkynes in water. that is, CuI/NEt 3 [21], CuI/N-alkylimidazole [22], and CuBr/sulfur ligands [23], have been reported to be active in pure water. As an example, excellent yields are achieved in short reaction times at room temperature with the system CuBr/PhSMe, although a high catalyst loading is required (see Scheme 15.2). More recently, there has been a growing interest in the use of well-defined copper(I) catalysts as precursors of catalytic active species in water. An updated account of these developments is presented in this chapter, including transformations with terminal and internal alkynes that lead to the preparation of 1,4-disubstituted and 1,4,5-trisubstituted triazoles, respectively.
Despite [CuBr(PPh 3 )
] and [CuI {P(OEt)
3 }] being seminal catalysts in CuAAC [11a], it was only when D´ıez-Gonz´alez and coworkers reported [24] that phosphine complexes [CuXL 3 ] (X = Cl, Br; L = PPh 3 , P(OR)Ph 2 , P(OR)
2 Ph) are efficient and selective catalysts for this transformation in pure water. By using 0.5 mol% of catalyst loading (see Scheme 15.3), the reactions proceed at room temperature and in the absence of any other cocatalyst. The corresponding triazoles were recovered in pure form after simple filtration or extraction in moderated-to-good yields (60–95%). On the basis of the wide catalytic applications of NHC transition metal complexes [25], Nolan and coworkers have thoroughly studied the catalytic activity in CuAAC reactions of well-defined copper(I) complexes with general formula [CuX(NHC)]. Organic solvents, mixtures of EtOH/water, and pure water have been used as reaction media. In particular, it has been reported that complexes [CuBr(SIMes)] (1 in Fig. 15.1, SIMes = N,N-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene)) and [CuI(IAd)] (2 in Fig. 15.1, IAd = N,N-adamantyl imidazol-2-ylidene) show a remarkable activity for the synthesis of a Scheme 15.3 CuAAC reactions catalyzed by the copper-phosphine or copper-phosphi(o)nite complexes [CuXL 3 ] in water. Figure 15.1 [CuX(NHC)] complexes active in CuAAC reactions in water. CUAAC: ORGANIC SOLVENTS VERSUS AQUEOUS MEDIA 201 Scheme 15.4 CuAAC-peptide synthesis mediated by complex 4. variety of triazoles in aqueous media [13a]. After screening the catalytic activity for a series of [CuX(NHC)] complexes in water [13d], it was found that complex [CuCl(SIPr)] (3 in Fig. 15.1, SIPr = N,N-bis(2,6-diisopropylphenyl)imidazolidin-2- ylidene) was the least reactive catalyst for this transformation [13e], as no reaction was observed under ambient conditions and gentle heating was required for the efficient preparation of the corresponding triazoles. A significant improvement of the methodology in the CuAAC reaction in water has been reported recently by Gautier and coworkers [26], based on the synthesis of a hydrosoluble NHC ligand containing two hydrophilic triazolyl-choline arms as a modification (see Scheme 15.4) and the corresponding complex [CuI(NHC)]. This new, readily accessible, hydrophilic, and highly stable complex (4 in Scheme 15.4) allowed performing CuAAC reactions involving clean ligations of unprotected peptides bearing sensitive side chains under challenging conditions such as common aqueous buffer (pH 7.6) solutions under air and low catalyst loading. Surprisingly, and despite a strong acceleration effect having been observed when using N-donor ligands in “Click” CuAAC reactions in organic media, only a few well-defined copper(I) catalysts have been used in water. As mentioned above, several N-ligands have been used as protecting ligands of copper(I) in aqueous media including mono-, bi-, and polydentate amines [21, 22, 27]. The first example of an isolated catalyst that is active in water was reported by Peric`as and coworkers [28] (see Scheme 15.5). The air-stable and water-soluble copper(I) complex contains a tripodal tris(1-benzyl-1H- 1,2,3-triazol-4-yl)methanol ligand (5), which is proposed to be coordinated in a κ 3 -mode on the basis of the characterization data of the corresponding copper(II) analog. Triazoles are formed in good yields from the corresponding azides in water or in neat conditions at room temperature. Recently, ligand 5 was immobilized onto Merrifield resins. The corresponding S N 2-supported Cu complex is also active at low catalyst loadings and at low concentration in aqueous media [18]. Iminophosphorane base ligands (also known in the literature as phosphazenes or phosphinimes, R 3 P
scarcely used in metal-catalyzed reactions in water. We have recently reported a highly active novel catalyst for the Huisgen 1,3-dipolar cycloadditions in pure water, based on a 1,3,5-triaza-7-phosphaadamantane (PTA)-iminophosphorane Cu(I) complex (6) [29]. This complex represents one of the few examples of an isolated and crystallographically characterized
CuAAC reaction in water catalyzed by complex 5 ·CuCl.
202 “CLICK” COPPER CATALYZED AZIDE–ALKYNE CYCLOADDITION (CUAAC) IN AQUEOUS MEDIUM Scheme 15.6 Synthesis of 1,4-disubstituted triazoles catalyzed by complex 6 in water. copper(I) catalyst active in water. Its high stability, which allows performing the reactions in air and in aqueous media, precludes either oxidation or disproportionation, which are generally associated with most copper(I) catalysts in CuAAC reactions (see Scheme 15.6).
The formation of intermediates based on copper(I) alkynyl species is postulated as the first step in CuAAC reactions [16, 30]. In accordance with this proposed mechanistic insight, internal alkynes are not able to undergo the required cycloaddition, a limitation generally observed with conventional copper catalysts [31, 32]. In order to overcome this limitation, several routes for the synthesis of triazoles, starting from internal alkynes, have been devised as alternative synthetic approaches to CuAAC (all of them using organic solvents) [33, 34]. In a seminal work, Sharpless, Fokin, and coworkers [33e] have reported that the readily accessible internal 1-iodoalkynes have revealed an exceptional reactivity in copper(I)-catalyzed processes with organic azides, using an equimolar mixture of CuI and the polyamine ligands tris((1-benzyl-1H-1,2,3-triazolyl)-methyl)amine (TBTA) and tris((1-tert-butyl-1H-1,2,3-triazolyl)methyl)amine (TTTA). In particular, the system containing the ligand TTTA is active in aqueous media (see Scheme 15.7). We have recently reported that the air-stable and hydrosoluble iminophosphorane copper(I) complex 6 is also active in CuAAC of 1-iodoalkynes in aqueous media, under mild and aerobic conditions according to “click laws” and displaying a broad substrate scope and functional compatibility [29] (see Scheme 15.8). It is important to note the following catalytic features: (i) catalyst 6 was the first example of an isolated and crystallographically characterized copper(I) catalyst active for cycloaddition of 1-iodoalkynes with azides, to give 5-iodo-1,2,3-triazoles exclusively. (ii) The presence of a free thio moiety in the substrate does not deactivate the catalyst, a fact generally observed in CuAAC for functionalized substrates Scheme 15.7 Synthesis of 5-iodo-1,4-trisubstituted triazoles catalyzed by CuI ·TTTA.
Synthesis of 5-iodo-1,4-disubstituted triazoles catalyzed by the iminophosphorane-Cu(I) complex 6 in water. FINAL REMARKS 203 with donor atom groups. Since the reaction is also amenable to low catalyst loadings and is accessible on a multigram scale, the practical application of this methodology provides a valuable synthetic approach to 5-iodo-1,2,3-triazoles, which are versatile intermediates useful for further functionalizations. Most recently, Buckley et al. [35], have shown that the polymeric alkynylcopper(I) ladder complex [PhC ≡C–Cu]
n , can
be used as heterogeneous precatalyst in the “on water” click reaction for the synthesis of 5-iodo-1,2,3-triazoles. However, important drawbacks were reported for this catalytic system when compared with complex 6: (i) high copper loadings were required (10 mol%), (ii) the cycloaddition reaction is restricted to iodophenylacetylene and benzylic azides, and (iii) significant level of protolysis was observed. Download 11.05 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling