Chemistry and catalysis advances in organometallic chemistry and catalysis
Download 11.05 Mb. Pdf ko'rish
|
Scheme 16.22 Examples of complex transformations. In the total synthesis of ( +)-lycopladine A by Toste et al. [30], a gold-catalyzed 5-endo cyclization of an iodoalkyne with a silyl enol ether has been used (Scheme 16.25). This transformation efficiently produces a β,γ -unsaturated bicyclic ketone that possesses the required quaternary asymmetric center at the position α to the carbonyl group. The vinyl iodide functionality generated during the cyclization was subsequently used in a palladium-catalyzed cross-coupling reaction in order to construct the pyridine ring of ( +)-lycopladine A. The synthetic potential of gold catalysis, more especially for the generation of structural complexity, is particularly well illustrated by the total syntheses of Englerin A and B, reported independently in 2010 by Echavarren et al. and Ma et al. [31] (Scheme 16.26). A very similar approach was used by these two groups to produce, via a gold-catalyzed [2 + 2 + 2] intramolecular cycloaddition between an alkyne, an alkene, and a ketone, the core structure of the Englerins. Notably, this complex gold-catalyzed sequence, which operates with an absolute control of the stereoselectivity, allowed the creation of three new asymmetric centers and three new bonds (2 C–C and 1 C–O bonds). 16.11 CONCLUSION As briefly presented in this chapter, modern homogeneous gold catalysis, while being a recent field of research, has already emerged as a powerful tool in the arsenal of synthetic organic chemists. Gold catalysts, some of which are easy to prepare,
222 ORGANOGOLD CATALYSIS: HOMOGENEOUS GOLD-CATALYZED TRANSFORMATIONS FOR A GOLDEN JUBILEE [Au] (3 mol%) AgOTf (6 mol%) Toluene, 0 °C O Ph O O MeO MeO
P P Ar 2 AuCl
AuCl Ar 2 Ar = 4-MeO-3,6-(t-Bu) 2 C 6 H 2 O Ph H O O 61%, 96% ee (R)-DTBM-MeOBIPHEP MeO
2 C MeO 2 C Ph [Au1] (3 mol%) H H Ph MeO
2 C MeO 2 C P P Ar 2 AuCl AuCl
Ar 2 O O O O AgBF 4 (6 mol%) CH 2 Cl 2 , 4
°C 92%, 95% ee Ar = 4-MeO-3,6-(t-Bu) 2 C 6 H 2 (R)-DTBM-SEGPHOS [Au] : [Au
]: OAc [Au] (2.5 mol%) AgSbF
6 (5 mol%) CH 3
2 , −25 °C OAc P P Ar 2 AuCl AuCl Ar 2 Ar = 3,5-Me 2 C 6 H 3 (R)-3,5-xylylBINAP 94%, 92% ee [Au] : [Au2] (5.5 mol%) AgBF 4
CH 2 Cl 2 , 0
°C 91%, >99% ee Ar = 4-t-BuC 6 H 4 [Au 2 ] :
P O O MeO MeO
Ar Ar Ar Ar N Ph Ph AuCl
OH [(AuCl)
2 (dppm)] (2.5 mol%) O O
Benzene, 23 °C 90%, 97% ee AgL* : Ar = 2,4,6-i-PrC 6 H
O Ar Ar P O OAg (R)-TripAg Scheme 16.23 Examples of chiral transformations. store, and handle, possess a rather unique reactivity when compared to other electrophilic metallic species. They allow an efficient access to a large variety of molecules, which could not be so easily synthesized using more traditional methods. Even if many significant advances have been made during the last 10 years, especially in the development of gold-catalyzed transformations and in the understanding of gold catalysts reactivity, several aspects of gold catalysis still require additional studies. Accomplishing efficient and widely applicable gold-catalyzed coupling reactions using the Au(I)/Au(III) couple, and the development of asymmetric catalytic systems, whose scope remains so far rather limited are, for instance, two points of current interest. Given the number of research groups actively engaged in the field of gold catalysis, one can easily imagine that a series of significant discoveries and breakthroughs will be made in the next two decades, thus ushering an even wider use of gold catalysts in synthetic organic chemistry in the future.
CONCLUSION 223 (dr = 97 : 3) N Et
2 C Steps N Et O N H ( −)-Rhazinilam H Me Et MeO
2 C N CH 2 Cl 2 , rt, 16 h 92% (5 mol %) (Ph 3 P)AuOTf H Me Et N MeO
2 C AuL Scheme 16.24 Total synthesis of ( −)-rhazinilam by Nelson et al. + MeOH
(+)-Lycopladine A − TBSOMe
TBSO I H OBn (Ph
3 P)AuCl/AgBF 4 (10 mol %) CH 2 Cl 2 /MeOH (10 : 1) 40 °C, 3 h
95% TBSO
I H OBn AuL O H I OBn
Steps O H N OH
Total synthesis of ( +)-lycopladine A by Toste et al. • Englerin A Steps H O OR H O O Ph OR = O OH O • Englerin B OR = OH TESO
OH O
[(IPr)Au(NCPh)] CH 2 Cl 2 , rt, 5 h 58% SbF
6 (3 mol %) TESO OH
i Pr LAu
LAu TESO
H O
HO TESO
H LAu
O OH
TESO H
OH Scheme 16.26 Total syntheses of Englerin A and B by Echavarren et al. and Ma et al. 224 ORGANOGOLD CATALYSIS: HOMOGENEOUS GOLD-CATALYZED TRANSFORMATIONS FOR A GOLDEN JUBILEE REFERENCES 1. Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108 , 6405–6406. 2. Kharasch, M. S.; Isbell, H. S. J. Am. Chem. Soc. 1930, 52 , 2919–2927. 3. Tamaki, A.; Kochi, J. K. J. Organomet. Chem. 1974, 64 , 411. 4. (a) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56 , 3729–3731; (b) Fukuda, Y.; Utimoto, K. Synthesis 1991, 975–978; (c) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64 , 2013–2015; (d) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37 , 1415–1418. 5. (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J. H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39 , 2285–2288; (b) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122 , 11553–11554. 6. Dyker, G. Angew. Chem. Int. Ed. 2000, 39 , 4237–4239. 7. Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44 , 6990–6993. 8. Selected reviews: (a) Corma, A.; Leyva-P´erez, A.; Sabater, M. J. Chem. Rev. 2011, 111 , 1657–1712; (b) Krause, N.; Winter, C. Chem. Rev. 2011, 111 , 1994–2009; (c) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111 , 1954–1993; (d) Boorman, T. C.; Larrosa, I. Chem. Soc. Rev. 2011, 40 , 1910–1925; (e) Bandini, M. Chem. Soc. Rev. 2011, 40 , 1358–1367; (f) Pradal, A.; Toullec, P. Y.; Michelet, V. Synthesis 2011, 1501–1514; (g) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47 , 6536–6544; (h) Wang, S.; Zhang, G.; Zhang, L. Synlett 2010, 2010 , 692,706; (i) Shapiro, N. D.; Toste, F. D. Synlett 2010, 675 ,691; (j) Das, A.; Sohel, S. M. A.; Liu, R.-S. Org. Biomol. Chem. 2010, 8 , 960–979; (k) F¨urstner, A. Chem. Soc. Rev. 2009, 38 , 3208–3221; (l) Belmont, P.; Parker, E. Eur. J. Org. Chem. 2009, 2009 , 6075–6089; (m) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38 , 2269–2281; (n) Widenhoefer, R. Chem. Eur. J. 2008, 14 , 5382–5391; (o) Skouta, R.; Li, C.-J. Tetrahedron 2008, 64 , 4917–4938; (p) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108 , 3395–3442; (q) Marion, N.; Nolan, S. P. Chem. Soc. Rev. 2008, 37 , 1776–1782; (r) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108 , 3239–3265; (s) Jim´enez-N´unez, E.; Echavarren, A. M. Chem. Rev. 2008, 108 , 3326–3350; (t) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37 , 1766–1775; (u) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108 , 3351–3378; (v) Arcadi, A. Chem. Rev. 2008, 108 , 3266–3325; (w) Muzart, J. Tetrahedron 2008, 64 , 5815–5849; (x) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333–346; (y) Hashmi, A. S. K. Chem. Rev. 2007, 107 , 3180–3211; (z) Gorin, D. J.; Toste, F. D. Nature 2007, 446 , 395–403; (aa) F¨urstner, A.; Davies, P.
Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 2006 , 4555–4563; (ad) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006, 45 , 7896–7936. 9. For an highlight, see: (a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47 , 6754–6756; For leading references, see: (b) F¨urstner, A.; Morency, L. Angew. Chem. Int. Ed. 2008, 47 , 5030–5033; (c) Seidel, G.; Mynott, R.; F¨urstner, A. Angew. Chem. Int. Ed. 2009,
718–721; (e) Fedorov, A.; Moret, M. -E.; Chen, P. J. Am. Chem. Soc. 2008, 130 , 8880–8881. 10. Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 2009, 1 , 482–486. 11. Kim, S.; Park, J.; Choi, S.; Chung, Y. Angew. Chem. Int. Ed. 2007, 46 , 6172–6175. 12. Witham, C. A.; Maule´on, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129 , 5838–5839. 13. Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127 , 11260–11261. 14. Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122 , 11553–11554. 15. (a) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127 , 9708–9709; (b) Barluenga, J.; Fern´andez-Rodr´ıguez, M. ´ A.; Garc´ıa-Garc´ıa, P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130 , 2764–2765; (c) Horino, Y.; Luzung, M. R.; Toste, F. D. J. Am. Chem. Soc. 2006, 128 , 11364–11365; (d) Brenzovich, W. E.; Benitez, D.; Lackner, A. D.; Shunatona, H. P.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. Angew. Chem. Int. Ed. 2010, 49 , 5519–5522; (e) Nieto-Oberhuber, C.; L´opez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127 , 6178–6179; (f) Cui, L.; Ye, L.; Zhang, L. Chem. Commun. 2010, 46 , 3351–3353; (g) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128 , 12614–12615; (h) Leyva, A.; Corma, A. J. Org. Chem. 2009, 74 , 2067–2074; (i) L´opez-Carrillo, V.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132 , 9292–9294; (j) de Fr´emont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P.
Gagosz, F. Organometallics 2007, 26 , 4704–4707; (m) Amijs, C. H. M.; L´opez-Carrillo, V.; Raducan, M.; P´erez-Gal´an, P.; Ferrer, C.; Echavarren, A. M. J. Org. Chem. 2008, 73 , 7721–7730; (n) L´opez, S.; Herrero-G´omez, E.; P´erez-Gal´an, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45 , 6029–6032. 16. (a) Bandini, M.; Eichholzer, A. Angew. Chem. Int. Ed. 2009, 48 , 9533–9537; (b) Chao, C. M.; Vitale, M.; Toullec, P.; Genˆet, J. P.; Michelet, V. Chem. Eur. J. 2009, 15 , 1319–1323; (c) Chao, C. -M.; Beltrami, D.; Toullec, P. Y.; Michelet, V. Chem. Commun. 2009, 6988–6990; (d) Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131 , 5372–5373; (e) Mart´ınez, A.; Garc´ıa-Garc´ıa, P.; Fern´andez-Rodr´ıguez, M.; Rodr´ıguez, F.; Sanz, R. Angew. Chem. Int. Ed. 2010, 49 , 4633–4637; (f) LaLonde, R.; Wang, Z.; Mba, M.; Lackner, A.; Toste, F. Angew. Chem. Int. Ed. 2010, 49 , 598–601; (g) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127 , 18002–18003; (h) Murai, M.; Uenishi, J.; Uemura, M. Org. Lett. 2010, 12 , 4788–4791; (i) Alonso, I.; Trillo, B.; L´opez, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lled´os, A.; Mascarenas, J. L. J. Am. Chem. Soc.2009,
REFERENCES 225 131 , 13020–13030; (j) Teller, H.; Fl¨ugge, S.; Goddard, R.; F¨urstner, A. Angew. Chem. Int. Ed. 2010, 49 , 1949–1953; (k) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317 , 496–499. 17. (a) Marion, N; Ram´on, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131 , 448–449; (b) Antoniotti, S.; Genin, E.; Michelet, V.; Genˆet, J.-P. J. Am. Chem. Soc. 2005, 127 , 9976–9977; (c) Nishina, N.; Yamamoto, Y. Tetrahedron Lett. 2009, 65 , 1799–1808; (d) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127 , 10500–10501; (e) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genˆet, J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128 , 3112–3113; (f) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6 , 4391–4394. 18. (a) Istrate, F.; Gagosz, F. Org. Lett. 2007, 9 , 3181–3184; (b) Morita, N.; Krause, N. Org. Lett. 2004, 6 , 4121–4123; (c) Kang, J.-E.; Kim, H.-B.; Lee, J.-W.; Shin, S. Org. Lett. 2006, 8 , 3537–3540. 19. (a) Morita, N.; Krause, N. Angew. Chem. Int. Ed. 2006, 45 , 1897–1899; (b) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2006, 45 , 4473–4475. 20. (a) Maule´on, P.; Zeldin, R. M.; Gonz´alez, A. Z.; Toste, F. D. J. Am. Chem. Soc 2009, 131 , 6348–6349; (b) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127 , 6962–6963; (c) Huang, X.; Zhang, L. J. Am. Chem. Soc 2007, 129 , 6398–6399; (d) Lemi`ere, G.; Gandon, V.; Agenet, N.; Goddard, J.-P.; de Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45 , 7596–7599; (e) Ferrer, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45 , 1105–1109; (f) Odabachian, Y.; Le Goff, X.-F.; Gagosz F. Chem. Eur. J. 2009, 15 , 8966–8970. 21. (a) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem. 2003, 3485–3496; (b) Yao, X.-Q.; Li, C.-J. J. Am. Chem. Soc. 2004, 126 , 6884–6885. 22. (a) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127 , 18002–18003; (b) Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131 , 11654–11655. 23. (a) Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46 , 5598–5601; (b) Toullec, P. Y.; Genin, E.; Leseurre, L.; Genˆet, J.-P.; Michelet, V. Angew. Chem. Int. Ed. 2006, 45 , 7427–7430; (c) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130 , 1814–1815; (d) Buzas, A.; Istrate, F.; Gagosz, F. Angew. Chem. Int. Ed. 2007, 46 , 1141–1144. 24. (a) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132 , 8550–8551; (b) Yeom, H. S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J. E.; Lee, S.; Shin, S. Angew. Chem. Int. Ed. 2010, 49 , 1611–1614; (c) Wetzel, A.; Gagosz, F. Angew. Chem. Int. Ed. 2011,
25. (a) Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Angew. Chem. Int. Ed. 2009, 48 , 3112–3115; (b) Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010, 132 , 1474–1475; (c) Melhado, A. D.; Brenzovich, W. E.; Lackner, A. D.; Toste, F. D. J. Am. Chem. Soc.
K. Chem. Eur. J. 2009, 15 , 10563–10569; (f) Brand, J. P.; Waser, J. Angew. Chem. Int. Ed. 2010, 49 , 7304–7307. 26. Tkatchouk, E.; Mankad, N. P.; Benitez, D.; Goddard III W. A.; Toste, F. D. J. Am. Chem. Soc. 2011, 133 , 14293–14300. 27. (a) Zhang, L. J. Am. Chem. Soc. 2005, 127 , 16804–16805; (b) Odabachian, Y.; Gagosz F. Adv. Synth. Catal. 2009, 351 , 379–386; (c) Jim´enez-N´u˜nez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45 , 5452–5455; (d) Lemi`ere, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Ghimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2009, 131 , 2993–3006. 28. (a) Chao, C.-M.; Beltrami, D.; Toullec, P.-Y.; Michelet, V. Chem. Commun. 2009, 6988–6990; (b) Luzung, M. R.; Maule´on, P.; Toste, F. D. J. Am. Chem. Soc. 2007, 129 , 12402–12403; (c) Teller, H.; Fl¨ugge, S.; Goddard, R.; F¨urstner, A. Angew. Chem. Int. Ed.
Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317 , 496–499. 29. Liu, Z.; Wasmuth, A. S.; Nelson, S. G. J. Am. Chem. Soc. 2006, 128 , 10352–10353. 30. Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde, R. L.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45 , 5991–5994. 31. (a) Molawi, K.; Delpont, N.; Echavarren, A. Angew. Chem. Int. Ed. 2010, 49 , 3517–3519; (b) Zhou, Q.; Chen, X.; Ma, D. Angew. Chem. Int. Ed. 2010, 49 , 3513–3516. 17 VANADIUM(IV) COMPLEXES DERIVED FROM AROMATIC o-HYDROXYALDEHYDES AND TYROSINE DERIVATIVES: CATALYTIC EVALUATION IN SULFOXIDATIONS Jo ˜ao Costa Pessoa*, Isabel Correia, and Pedro Ad ˜ao Centro Qu´ımica Estrutural, Instituto Superior T´ecnico, Universidade de Lisboa, Lisboa, Portugal 17.1 INTRODUCTION The binding of V IV O
+ and vanadate to the tyrosine residues at the Fe-binding sites of transferrin is well documented [1–4], as also the direct binding of vanadate to tyrosine in tyrosyl-DNA-phosphodiesterase [5]. However, the amino acid itself is quite ineffective in the coordination to vanadium. Dipeptides containing Tyr are more effective binders but the main complexes formed exclude Tyr from direct binding [6]. The presence of an anchor group in the ligand may enhance its binding ability and, in this respect, N-salicylidene aminoacidato-type complexes have been extensively studied [7–11]; in many cases, they may be easily prepared by the condensation of an aromatic o-hydroxyaldehyde and an amino acid in the presence of a metal ion. However, these Schiff bases (SBs) in solution may hydrolyze, and, in many cases, it is not possible to characterize either the ligands or their complexes in the solid state or in solution. This instability can often be overcome by reduction of the SB at the imine function to give an amine [12–16]. For example, the stability constant of the reduced SB V IV
IV O(pyran) is approximately 10 6 higher than that of the corresponding V IV O(pyren)—Scheme 17.1. Moreover, while V IV O(pyran) is stable in water in the pH range 2–12, V IV O(pyren) is only stable in the pH range circa 3–6 [12]. Several reduced SB derived from the reactions of salicylaldehyde derivatives and several diamines were prepared and used as catalyst precursors in catalytic oxidations [17]. In our contribution to the advancement of the chemistry of amino acid-based vanadium compounds as well as catalysts, we previously reported the preparation of several aminophenolate-l- tyrosine V IV O-compounds, specifically: 1–5 and 8 in Scheme 17.2. We now extend this work, preparing a few new ligands and V IV O-complexes intended for use as catalysts in the enantioselective sulfoxidation of thioanisole. Oxygen donors on the side chain of the l-tyrosine residue allow the preparation of heterogeneous versions, as well as their vanadium complexes by binding them to a polystyrene (PS) Merrifield resin, allowing the preparation of stable metal complexes that will lead to low leaching of the metal ion and possibly increased selectivity. Therefore, the O-benzylated Tyr derivatives 6 and 7, the polymer anchored sal-l-Tyr compound and the corresponding V IV O-complexes were obtained, characterized, and studied for their catalytic properties in the enantioselective sulfoxidation of thioanisole. The O-benzylated derivatives 6 and 7 and their V
IV O-complexes 11 and 12 were prepared so that they may be used as models of the PS-supported ligands and V IV
Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, First Edition. Edited by Armando J. L. Pombeiro. © 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
Download 11.05 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling