Environmental performance of the innovative, patented mixing system in an agricultural biogas plant based on lca approach
CRediT authorship contribution statement
Download 4.03 Mb. Pdf ko'rish
|
1-s2.0-S0959652622010423-main
- Bu sahifa navigatsiya:
- Andrzej Myczko: Methodology, Writing – original draft. Declaration of competing interest
- Acknowledgements
- Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi. org/10.1016/j.jclepro.2022.131420 . References
CRediT authorship contribution statement
Edyta Wrzesi´nska-Jędrusiak: Conceptualization, Methodology, Writing – original draft, Writing – review & editing, Investigation. Magdalena Muradin: Methodology, Writing – original draft. Marcin Herkowiak: Investigation, Writing – original draft. Barbara Łaska- Zieja: Investigation, Writing – original draft, Writing. Andrzej Myczko: Methodology, Writing – original draft. Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Acknowledgements This study is carried out within the project “Development of inno- vative technologies for comprehensive utilisation of waste generated during pig fattening - KompUtyl” co-financed by the National Centre for Research and Development under the strategic programme of scientific research and development works “Environment, agriculture and forestry” Biostrateg 2/298357/8/NCBR/2016. Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi. org/10.1016/j.jclepro.2022.131420 . References Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A. E., Al-Muhtaseb, A.H., Unalan, S., 2020. Biogas production from organic waste: recent progress and perspectives. Waste Biomass Valorization 11 (3), 1019–1040. https://doi.org/10.1007/s12649-018-00546-0 . Aziz, N.I.H.A., Hanafiah, M.M., Gheewala, S.H., 2019. A review on life cycle assessment of biogas production: challenges and future perspectives in Malaysia. Biomass Bioenergy 122, 361–374 . Bacenetti, J., Sala, C., Fusi, A., Fiala, M., 2016. Agricultural anaerobic digestion plants: what LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 179, 669–686. https://doi.org/10.1016/ j.apenergy.2016.07.029 . Biogas Report in Poland, 2020. https://magazynbiomasa.pl/biogaz-w-polsce-rap ort-2020 . (Accessed 16 December 2021). Croxatto Vega, G.C., Ten Hoeve, M., Birkved, M., Sommer, S.G., Bruun, S., 2014. Choosing co-substrates to supplement biogas production from animal slurry - a life cycle assessment of the environmental consequences. Bioresour. Technol. 171, 410–420. https://doi.org/10.1016/j.biortech.2014.08.099 . Dawid, L., 2019. Current status and perspectives on offshore wind farms development in the United Kingdom. J. Water Land Dev. 43 (X–XII), 49–55. https://doi.org/ 10.2478/jwld-2019-0062 . E. Wrzesi´nska-Jędrusiak et al. Journal of Cleaner Production 349 (2022) 131420 10 De Vries, J.W., Vinken, T.M., Hamelin, L., De Boer, I.J.M., 2012. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy -a life cycle perspective. Bioresour. Technol. 125, 239–248. https://doi.org/10.1016/j.biortech.2012.08.124 . Deutscher, V., 1997. VDI-richtlinie 4600: cumulative energy demand, terms, definitions, methods of calculation, Verein Deutscher Ingenieure. Düseldorf ICS 01 27, 27, 040 . Esteves, E.M.M., Herrera, A.M.N., Esteves, V.P.P., Morgado, C.D.R.V., 2019. Life cycle assessment of manure biogas production: a review. J. Clean. Prod. 219, 411–423. https://doi.org/10.1016/j.jclepro.2019.02.091 . European Commission, 2020. A New Circular Economy Action Plan, for a Cleaner and More Competitive Europe, 2020. COM, Brussels, p. 98 final . Fuchsz, M., Kohlheb, N., 2015. Comparison of the environmental effects of manure- and crop-based agricultural biogas plants using life cycle analysis. J. Clean. Prod. 86, 60–66. https://doi.org/10.1016/j.jclepro.2014.08.058 . Fusi, A., Bacenetti, J., Fiala, M., Azapagic, A., 2016. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion. Front. Bioeng. Biotechnol. 4 https://doi.org/10.3389/fbioe.2016.00026 . Hijazi, O., Munro, S., Zerhusen, B., Effenberger, M., 2016. Review of life cycle as assessment for biogas production in Europe. Renew. Sustain. Energy Rev. 54, 1291–1300. https://doi.org/10.1016/j.rser.2015.10.013 . ISO 14040, 2009. Environmental Management — Life Cycle Assessment — Principles and Framework . ISO 14044, 2009. Environmental Management — Life Cycle Assessment – Requirements and Guidelines . Jury, C., Benetto, E., Koster, D., Schmitt, B., Welfring, J., 2010. Life Cycle Assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenergy 34 (1), 54–66. https://doi.org/10.1016/j. biombioe.2009.09.011 . Karaeva, J.V., Khalitova, G.R., Kovalev, D.A., Trakhunova, I.A., 2015. Study of the process of hydraulic mixing in anaerobic digester of biogas plant. Chem. Process Eng. 36 (1), 101–112. https://doi.org/10.1515/cpe-2015-0008 . Karim, K., Hoffmann, R., Klasson, K.T., Al-Dahhan, M.H., 2005. Anaerobic digestion of animal waste: effect of mode of mixing. Water Res. 39 (15), 3597–3606. https://doi. org/10.1016/j.watres.2005.06.019 . Lemmer, A., Naegele, H.J., Sondermann, J., 2013. How efficient are agitators in biogas digesters? Determination of the efficiency of submersible motor mixers and incline agitators by measuring nutrient distribution in full-scale Agricultural biogas digesters. Energies 6, 6255–6273. https://doi.org/10.3390/en6126255 . Lij´o, L., Gonz´alez-García, S., Bacenetti, J., Negri, M., Fiala, M., Feijoo, G., Moreira, M.T., 2015. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production. Waste Manag. 41, 50–59. https://doi.org/10.1016/j. wasman.2015.03.043 . Mezzullo, W.G., McManus, M.C., Hammond, G.P., , 2013. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste. Appl. Energy, 102, pp. 657–664. https://doi.org/10.1016/j.apenergy.2012.08.008 . Elsevier. Ministry of Agriculture and Rural Development, 2019. Advisory Code of Good Agricultural Practice for Ammonia Emission Reduction. Warsaw in Polish). https ://www.gov.pl/web/rolnictwo/zbior-zalecen-dobrej-praktyki-rolniczej-do-dobrow olnego-stosowania . (Accessed 16 December 2021). Muradin, M., Kulczycka, J., 2020. The identification of hotspots in the bioenergy production chain. Energies 13, 5757. https://doi.org/10.3390/en13215757 . Muradin, M., Joachimiak-Lechman, K., Foltynowicz, Z., 2018. Evaluation of eco- efficiency of two alternative agricultural biogas plants. Appl. Sci. 8 (11), 2083. https://doi.org/10.3390/app8112083 . Myczko, A., Sawi´nski, R., 2017. Pump for Lifting Liquids, Favourably with Addition of Solid Particles, By Means of a Working Medium in the Form of Gas or Air, 232162. Patent . Myczko, A., Myczko, R., Kołodziejczyk, T., Golimowska, R., Lenarczyk, J., Janas, Z., Kliber, A., Karłowski, J., Dolska, M., 2011. Construction and Operation of Agricultural Biogas Plants, p. 140 . Myczko, A., Sawi´nski, R., Wrzesi´nska-Jędrusiak, E., Aleszczyk, Ł., Łaska-Zieja, B., 2019. Prosumer biogas installations for the sanitation of slurry and post-production residues from agricultural. Water Environ Rural Area 1 (65), 19–36, 19 . Negri, M., Bacenetti, J., Manfredini, A., Lovarelli, D., Fiala, M., Maggiore, T.M., Bocchi, S., 2014. Evaluation of methane production from maize silage by harvest of different plant portions. Biomass Bioenergy 67, 339–346. https://doi.org/10.1016/j. biombioe.2014.05.016 . Poeschl, M., Ward, S., Owende, P., 2012. Environmental impacts of biogas deployment - Download 4.03 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling