Falsafa fani iqtisodchilar uchun matematika fanidan


Download 1.57 Mb.
bet2/11
Sana15.01.2023
Hajmi1.57 Mb.
#1094070
TuriReferat
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
19-Ma’ruza Kombinatorika elementlari. Ehtimolning klassik ta’rifi

2-Misol. Guruhda 25 ta talaba bor. Guruh sardorini, yoshlar harakati yetakchisini, kasaba uyushmasi a’zosini va guruh tashkilotchisini saylash kerak. Agar har bir talaba faqat bitta lavozimni egallash mumkin bo’lsa, necha usul bilan bu lavozimlarni guruh talabalari o’rtasida taqsimlash mumkin?
►Bu holda 25 elementni 4 tadan qilib o’rinlashtirishlar sonini topish kerak. (2)
formulaga ko’ra ya’ni 25
talabadan tortta lavozimga to’rt kishini 303600 usul bilan saylash mumkin ekan.◄
Takroriy o’rinlashtirishlar. ta elementan iborat to’plam berilgan. Bu to’plamdan ketma-ket elementlardan bittasi tanlanadi va yana to’plamga qaytariladi. Natijada qadamda kombinatsiya ro’yxatga olinadi. Bunday barcha kombinatsiyalar soni
(3)
formula bilan hisoblanadi, bunda qadamda element to’plamdan olingan. Bunday kombinatsiyalarda bitta element 1 tadan tagacha ham qatnashishi mumkin, biroq kombinatsiyalar elementlarning o’rni bilan farq qilishi mumkin.
3-Misol. 1, 2, 3 raqamlaridan tuzilgan barcha ikki xonali sonlarning soni nechta va ularni yozib chiqing.
►Bu yerda 3 ta elementni 2 tadan qilib takroriy o’rinlashtirishlar sonini topish kerak: . Endi bu raqamlardan tuzilgan barcha ikki xonali sonlarni yozamiz: 11,
12, 13, 21, 22, 23, 31, 32, 33.◄
Guruhlashlar. to’plamning ta elementidan tuzilgan
kombinatsiyalarda elementning tartibi inobatga olinmaydi va bitta
element bitta kombinatsiyada faqat bir marta qatnashadi. Demak bir xil elementlardan tashkil topgan kombinatsiyalar teng hisoblanadi. Bunday kombinatsiyalarning soni
- (4)
formulaga ko’ra hisoblanadi.
4-Misol. Guruhda 25 ta talaba bor. Guruhga dam olish uyiga borish uchun uchta yo’llanma ajratilgan. Necha usul bilan guruh talabalaridan uchtasini dam olish uyiga jo’natish mumkin.
►25 ta elementni 3 tadan qilib guruhlashlar sonini topish kerak:
Demak 25 talabani uchtadan guruhlab 2300 usul bilan dam olish uyiga jo’natish mumkin ekan.◄
O’rin almashtirishlar. Bunda ta turli elementli to’plam elementlaridan faqat elementlarning tartibi bilan farq qiladigan barcha kombinatsiyalar qaraladi. Har bir kombinatsiyada bitta element faqat bir marta qatnashadigan bunday kombinatsiyalar soni
(5)
formula bilan hisoblanadi.
5-Misol. Axmedov, Botirov va Vohidov familiyalaridan necha usul bilan uchta familiyalai ro’yxat tuzish mumkin va bu ro’yxatlarni keltiring.
►3 ta elementning o’rin almashtirishlar sonini topish kerak: . Endi bu familiyalarning bosh harflaridan tuzilgan ro’yxatlarni keltiramiz: ,
, , , , .◄

Download 1.57 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling