Funksiyani hosila yordamida tckshirish va grafigini


Download 322.9 Kb.
bet7/7
Sana27.01.2023
Hajmi322.9 Kb.
#1131250
1   2   3   4   5   6   7
Bog'liq
8-ma\'ruza.Funksiyani hosila yordamida tckshirish va grafigini yasash

8.9.1-misol. Ushbu f(x)=arctgx funksiyani 0(xn) hadgacha Makloren formulasiga yoying:
Yechilishi. Ma’lumki,

f n (x)
(n  1)!
 sin n(arctg x ),




(1  x2 )n/2
2

(n)


0, agarda n juft bo 'lsa ,

f (0) 



(1)
т1 2

(т  1)! , agarda n toq bo 'lsa.



Demak, Peano ko‘rinishidagi qoldiq hadli Makloren formulasiga asosan, (5)


3
arctg x x x
3

  • x5

5

  • x7

7
n1 xn
 ...  (1) 2  0(xn )
n
(26)



    1. Teylor formulasidan foydalanib limitlarni hisoblash





Ushbu
lim f (x)
x0 g(x)
limitni topish talab qilingan bo‘lsin, bunda

f(0)=g(0)=0. f(x) va g(x) lar Makloren formulasiga yoyiladigan funksiyalar bo‘lsin. Bu funksiyalarning Makloren formulasidagi yopilmalarining birinchi noldan farqli hadi bilan chegaralanamiz:

Agar m=n bo‘lsa,
f (x)  axn  0(xn ) ,
g(x)  bxm  0(xm ) ,
a  0,
b  0.

lim
f (x)


 lim
axn  0 (xn ) a
(1)

bo‘ladi.
Agar


bo‘ladi.
n m

bo‘lsa,
x0 g(x)




lim f (x)
x0 g(x)
x0 bxm  0 (xm ) b

lim m m

0
axn  0 (xn )
x0 bx  0 (x )




Agar
n m bo‘lsa,
lim


f (x)
 lim


axn  0 (xn )

bo‘ladi.
x0 g(x)


x0 bxm  0 (xm )




8.10.1-misol. Ushbu


lim tg x  sin x

limitni toping.

Yechilishi.


tg x

x3 



x
3
0 (x4 )
x0 x3

,



3
sin x x x
6
 0(x4 )

yoyilmalardan foydalanib, berilgan limitni topamiz:



tg x
1 x3  0 (x 4 )


lim sin x  lim 2  lim1 0(x
) 1 .

x0 x3
x0 x3
x0 2
x3 2

Download 322.9 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling