8.9.1-misol. Ushbu f(x)=arctgx funksiyani 0(xn) hadgacha Makloren formulasiga yoying:
Yechilishi. Ma’lumki,
f n (x)
(n 1)!
sin n(arctg x ),
(1 x2 )n/2
2
(n)
0, agarda n juft bo ' lsa ,
f (0)
(1)
т1 2
(т 1)! , agarda n toq bo 'lsa.
3
arctg x x x
3
5
7
n1 xn
... (1) 2 0( xn )
n
(26)
Ushbu
lim f (x)
x0 g(x)
limitni topish talab qilingan bo‘lsin, bunda
f(0)=g(0)=0. f(x) va g(x) lar Makloren formulasiga yoyiladigan funksiyalar bo‘lsin. Bu funksiyalarning Makloren formulasidagi yopilmalarining birinchi noldan farqli hadi bilan chegaralanamiz:
Agar m=n bo‘lsa,
f (x) axn 0(xn ) ,
g(x) bxm 0(xm ) ,
a 0,
b 0.
lim
f (x)
lim
axn 0 (xn ) a
(1)
bo‘ladi.
Agar
bo‘ladi.
n m
bo‘lsa,
x0 g(x)
lim f ( x)
x0 g( x)
x0 bxm 0 ( xm ) b
lim m m
0
axn 0 ( xn )
x0 bx 0 ( x )
Agar
n m bo‘lsa,
lim
f (x)
lim
axn 0 (xn )
bo‘ladi.
x0 g(x)
x0 bxm 0 ( xm )
8.10.1-misol. Ushbu
lim tg x sin x
limitni toping.
Yechilishi.
tg x
x3
x
3
0 ( x4 )
x0 x3
,
3
sin x x x
6
0(x4 )
yoyilmalardan foydalanib, berilgan limitni topamiz:
tg x
1 x3 0 (x 4 )
lim sin x lim 2 lim1 0(x
) 1 .
x0 x3
x0 x3
x0 2
x3 2
Do'stlaringiz bilan baham: |