Oliy matematika asoslari
- §. Алг ебр ан инг асо сий т еор ем ас и
Download 24 Kb. Pdf ko'rish
|
2- §. Алг ебр ан инг асо сий т еор ем ас и
К у й и да г и т е ор е м а н и ис б от с и з к е л т ир а ми з . Т е о р е м а . Д а р а ж а си б и р д а н кичик б у л м а га н ихтиёрий к у щ а д кам и да битта, ум ум а н айтганда ком плекс и л д и зга эга . Ф а р а з к и л а й л и к , б ирор я - д а р а ж а л и S' / ( х ) = а пх п - f - а П — \ ХП 1 —)— - - - —)— а | х —(-- 114 к у п х а д б е р и л г а н булсин. Б у к у п х а д ю к о р и д а г и т е о р е м а г а к ура к а м и д а б ит та ои и л д и з г а эга. Ш у н и н г учун. f (х) = {х — а \ ) - ф ! (х) т енг л ик ури н л и б у л а д и , б у н д а ф 1 ( х) к у п х а д були б, унинг д а р а ж а с и п — 1 га тенг. А г а р п > 1 б у л с а , бу (pi (x) к у п х а д х а м т е о р е м а г а к у ра к а м и д а б ит та а 2 и л д и з г а эг а б у л а д и : ф | (х) = ( х — а 2)ц>2( х ) . Бу е рд а ф2( х ) — к у п х а д . Н а т и ж а д а б е р и л г а н к у п х а д f ( x ) = ( х — а \ ) ( х — а 2) -ц>2(х) к у ри н и ш н и олади. Б у ж а р а ё н н и д а в о м э т т и р иш б ил а н f ( x ) = a n( x — a t) ( х — а 2) . . . ( х — а п) т е нг л и к к а к е л а ми з . Кейинг и т е н г л и к д а а ь а 2,..., а п с о н л а р о р а с и д а у з а р о б и р - би р и г а т ен г л ар и б у л и ш и мумкин. Шу н и э ъ т иб о р г а олсак, / ( * ) = а , 1{х — а 1) Ч( х) — a 2 ) 4 . . ( j c — a s ) * s ( 3 ) б у л а д и , б у нд а k\ -\- k 2-\- k s = п, i=/=j л а р д а a, -^=aj ( / , / = 1,2 , . . . , s ) . (3) т е н г л и к ур ин л и б у л г а н д а а т сон ( т — l , 2 ,...,s) f ( x ) к у п х а д н и н г k m к а р р а л и и л д и з и д е й и л а д и . Н а т и ж а д а к у й и д а г и т е о р е м а г а к е л а м и з . Download 24 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling