O’zbekiston respublikasi oliy va o’rta maxsus ta’lim vazirligi buxoro davlat universiteti fizika-matematika fakulteti “matematika” kafedrasi «Oddiy differensial tenglamalar» fanidan kurs ishi mavzu


Download 194.39 Kb.
bet4/10
Sana30.05.2020
Hajmi194.39 Kb.
#112050
1   2   3   4   5   6   7   8   9   10
Bog'liq
Hosilaga nisbatan yechilmagan birinchi tartibli differensial tenglamalar va ularni integrallash usullari (Восстановлен) (Восстановлен)

Haqiqatan ham, bu tenglamalardan: dx=- ψ(p)dp, dy=(-p ψ(p)- ψ'(p)+ ψ'(p))dp=-p ψ (p)dp, bu yerdan .Buni Klero tenglamasiga qo’yish -p ψ (p)+ ψ(p)= -p ψ (p)+ ψ(p) ayniyatga olib keladi.Sistemaning ikkala tenglamasidan p parametrni yo’qotib, (21) tenglamaning integrali Ф(x, y)=0 ni hosil qilamiz.Bu integralda c ishtirok etmaydi, umumiy integral bo’la olmaydi.Uni umumiy integraldan c ning hech qanday qiymatida hosil qilib bo’lmaydi,chunki chiziqli funksiya emas.U maxsus integral deyiladi.

Misol: y=px+1/p, bu yerda p= y tenglamaning umumiy va maxsus yechimini topamiz.

Umumiy yechimi bevosita tenglamadan p ni c ga almashtirib topamiz: y=cx+1/c.Maxsus yechimni topish uchun ψ(p)=-1/p2 ni topamiz.Ushbu


tenglamalar sistemasi parametrik shakldagi maxsus yechimdan iboratdir.p parametrni yo’qotamiz.Buning uchun ikkinchi tenglamaning ikkala tomonini kvadratga ko’tarib,ularni birinch tenglamaning mos qismlariga bo’lamiz; y2/x=4 ni hosil qilamiz,bu yerdan y2=4x.Geometrik nuqtai nazardan y=cx+1/c umumiy yechim to’g’ri chiziqlarning bir parametrli oilasini,maxsus integral esa parabolani tasvirlaydi.

Hosilaga nisbatan yechilmagan tenglamalarga ko’pincha turli geometrik masalalar,masalan,izogonal trayektoriyalar to’g’risidagi masalaga olib keladi.Agar F(x, y, a)=0 (24) egri chiziqlarning bir parametrik oilasi bo’lsa,u holda uning izogonal trayektoriyalari deb, (24) oila egri chiziqlari bilan bir xil φ burchak ostida kesishadigan egri chiziqlarning boshqa oilasiga aytiladi.Xususiy holda,agar bu burchak to’g’ri bo’lsa,ya’ni φ=/2 bo’lsa,trayektoriyalar ortogonal trayektoriyalar deb ataladi.Berilgan egri chiziqlar oilasi (24) ning differensial tenglamasini tuzamiz.Buning uchun (24) tenglamani x bo’yicha differensiallaymiz:



(25). (24) va (25) tenglamalardan a parametrni yo’qotamiz.Natijada (24) oilasining differensial tenglamasi y=f(xy) (26) ko’rinishga ega bo’lsin deb faraz qilaylik.M(x;y) nuqtada kesishuvchi ikkita egri chiziq orasidagi burchak deb,egri chiziqlarga bu nuqtada o’tkazilgan urinmalar orasidagi burchakka aytiladi.Agar (24) oilasining I egri chizig’iga M nuqtada o’tkazilgan urunmaning Ox o’q bilan tashkil qilgan burchagini α orqali,shu oilaning II egri chizig’iga ana shu nuqtada o’tkazilgan urinmaning Ox o’q bilan tashkil etgan burchagini β orqali belgilasak,u holda φ=±(β-α) yoki β=α±φ bo’ladi.Bu yerdan tgβ=(tgα±tgφ)/(1tgαtgφ).tgφ kattalik berilgan,uni k orqali belgilaymiz; tgα= y=f(x;y),shuning uchun tgβ=(f(x;y)±k)/(1kf(x;y)).Izogonal trayektoriyaning istalgan nuqtasining koordinatalari bilan bu nuqtadagi urinmaning burchak koeffitsiyenti orasidagi munosabatni,ya’ni trayektoriyalar oilasining differensial tenglamasini hosil qildik.tgβ ni yorqali belgilaymiz;u holda y=(f(x;y)±k)/(1kf(x;y)) (27).Bu differensial tenglamaning umumiy integrali (24) egri chiziqlar oilasi uchun izogonal trayektoriyalar oilasi bo’ladi; ular (24) egri chiziqlarni bir xil φ burchak ostida kesib o’tadi.Agar trayektoriyalar ortogonal bo’lsa,u holda φ=/2, β=α±/2, tgβ=-ctgα=-1/tgα=-1/f(x;y) va ortogonal trayektoriyalar oilasining differensial tenglamasi ushbu ko’rinishda bo’ladi: y=-1/f(x;y) yoki -1/ y=f(x;y) (28).Shunday qilib, quyidagi qoidani hosil qilamiz: berilgan (24) egri chiziqlar oilasi uchun izogonal trayektoriyalar oilasining differensial tenglamasini topish uchun bu oilaning (26) differensial tenglamasida yni (yk)/(1±k y) bilan almashtirish lozim, bu yerda k_egri chiziqlarning trayektoriyalar bilan kesishish burchagining tangensi.Xususan, ortogonal trayektoriyalar uchun y ni -1/ y ga almashtirish kerak.

Geometrik misollar.



1-misol. Shunday egri chiziqni topingki,unga o’tkazilgan istalgan urinmaning koordinata o’qlari orasidagi kesmasi l ga teng bo’lgan o’zgarmas uzunlikka ega bo’lsin.

Yechilishi: y=f(x) egri chiziqqa M(x;y) nuqtada o’tkazilgan urunma tenglamasi Y-y= y(X-x) ko’rinishga ega, bu yerda X,Y_urinma nuqtasining o’zgaruvchi koordinatalari.Bu tenglamadan urinmaning Ox o’q bilan kesishish nuqtasi A ning absissasini Y=0 deb, Oy o’q bilan kesishish nuqtasi B ning ordinatasini esa X=0 deb topamiz.Quyidagiga egamiz: XA=x-y/ y va YB=y-x y. A(XA;0) va B(0;YB) nuqtalar orasidagi masofani ikki nuqta orasidagi masofa formulasi bo’yicha topamiz va uni l ga tenglaymiz; ushbu differensial tenglamani hosil qilamiz:


Download 194.39 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling