O’zbekiston respublikasi oliy va o’rta maxsus ta’lim vazirligi termiz davlat pedagogika instituti matematika va uni o’qitish metodikasi kafedrasi algebra va sonlar nazariyasi fanidan mustaqil ta’lim topshiriqlari to’plami


Download 0.97 Mb.
bet5/17
Sana19.12.2022
Hajmi0.97 Mb.
#1033320
1   2   3   4   5   6   7   8   9   ...   17
Bog'liq
MUSTAQIL ISHLAR -ASN -1-KURS

3-MISOL. Ixtiyoriy A,B va C to‘plamlar uchun ushbu
Ax (BC) = (AxB)(AxC)
munosabatning to‘g‘ri ekanligini isbotlang.
a) ixtiyoriy Ax(BC) bo‘lsin, bundan xA, yBCbo‘lganligi uchun, birlashmani ta’rifidan xA, yB yoki yC. SHunday qilib, xA va yB yoki xA va yC, bulardan va to‘g‘ri ko‘paytmaning ta’rifidan AxB yoki Ax C
Demak,  (A x B)  (AxC), ya’ni
A x (BC) (AxB)(AxC) (2)
b) ixtiyoriy (A x B)(AxC) bo‘lsin. Bundan (A x B)yoki (AxC). To‘g‘ri ko‘paytmaning ta’rifidan xA va uB yokixA va uB bulardan xA va uBC. Demak, Ax (BC) yoki
(AxB)(AxC)Ax(BC) (3)
(2) va (3) munosabatlardan (1) tenglikni o‘rinli ekanligi kelib chiqadi.
To‘plamlar ustida amallarni bajaring .


1). [8;15]  [9;20]; [-1;1]  [-1;0); (-1-.0] [l;+);


2).[1;+) [0;); [-1;0)  [0;4]; {4} (-;4);


3).(0:2)  [0;2); [3;15] \ (5;16); [3;16]\[5;15];
[3;5][2;7]; [2;5] [3;7].


Tengliklarni isbotkfng .


4).A\(BC)=(A\B)(A\C);


5) (AB)\(AB)=(A\B) (B\A);


6). A\(BC)=(A\B) (A\C);


7) A\(A\B)=AB;


8).A\B=A\(AB);


9)A (B\C)=(AB)/C;


10). A (B\C)=(AB)\(AC);


11)A (B\A)=AB;


12). A\B=(AB)\B ;


13). (A\B)\C=A\(BC);


14).A\(B\C)=(A\B) (AC);


15) (A\B)C=(AC)\(BC).


16) (A\B)\C=(A\C)\(B\C) ;


17) A\(B\C)AC ;


18) (A\C)\(B\A)A\C ;



Download 0.97 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling