Предмет и методы патологической физиологии. Общие принципы и типы медико-биологических экспериментов. Моделирование болезней и патологических процессов. Примеры моделей. Значение патофизиологии для клиники
Download 1.99 Mb.
|
shpory-1 patshiz
- Bu sahifa navigatsiya:
- НАРУШЕНИЯ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ
- Билет № 50 1. - Патологические изменения лейкоцитов
Подпеченочная желтуха (механическая, обтурационная). Этиология желтухи изложена в подразделе «Нарушение желчевыделения».
Патогенез. Механическое препятствие оттоку желчи приводит к застою {внепеченочный вторичный холестаз) и повышению давления желчи выше 2,7 кПа (270 мм вод.ст.), расширению и разрыву желчных капилляров и поступлению желчи прямо в кровь или через лимфатические пути. Появление желчи в крови обусловливает прямую гипербилирубинемию (увеличивается содержание конъюгированного билирубина), гиперхолестеринемию, развитие холемического синдрома в связи с циркуляцией в крови желчных кислот, билируби-нурию (отсюда темная окраска мочи — «цвета пива») и наличие желчных кислот в моче. Непоступление желчи в кишечник из-за механического препятствия в желче вы водящих путях приводит к тому, что не образуется и, следовательно, не выделяется стеркобилин с калом (обесцвеченный, ахоличный кал) и мочой. Таков же механизм развития ахолического синдрома, наиболее выраженного при механической желтухе при полной обтурации желче вы водящих путей. Холемический синдром, наблюдаемый при механической и печеночной желтухе (гепатоцеллюлярная и холестатическая желтуха), возникает при попадании желчных кислот в кровь. Он характеризуется брадикардией и снижением артериального давления при действии желчных кислот на рецепторы и центр блуждающего нерва, синусовый узел сердца и кровеносные сосуды. Токсическое действие желчных кислот на центральную нервную систему проявляется в виде общей астении, раздражительности, сменяющейся депрессией, сонливости днем и бессонницы ночью, головной боли и повышенной утомляемости. Раздражение чувствительных нервных окончаний кожи желчными кислотами приводит к кожному зуду. Увеличение содержания желчных кислот в крови может вызвать гемолиз эритроцитов, лейкоцитолиз, снижение свертывания крови, повышение проницаемости мембран и развитие воспалительного процесса на месте контакта с тканями (печеночный некроз, перитонит, острый панкреатит). Ахолический синдром обусловлен непоступлением желчи в кишечник при обтурации желчевыводящих путей или нарушении экскреторной функции гепатоцита (при механической и печеночной желтухе). При этом наблюдается расстройство кишечного пищеварения. Вследствие отсутствия в кишках желчных кислот не активируется липаза, не эмульгируются жиры, не образуются растворимые комплексы желчных кислот с жирными кислотами, в связи с чем 60-70% жиров не переваривается, не всасывается и удаляется из организма вместе с калом (стеаторея). Нарушение всасывания жирорастворимых витаминов (ретинола, токоферола, филлохинона) приводит к развитию авитаминозов. Без филлохинона (витамина Kj) не образуется протромбин, снижается свертывание крови, что обусловливает повышенную кровоточивость. Отсутствие желчных кислот приводит к нарушению моторики кишечника: ослабляются тонус и перистальтика кишечника, появляется запор. Однако последний нередко сменяется поносом в связи с усилением гнилостных и бродильных процессов в кишках и снижением бактерицидных свойств желчи. Кал обесцвечен, так как при ахолии не образуется стеркобилин, который исчезает и из мочи. Дисхолия, при которой желчь приобретает литогенные свойства, обусловливает образование желчных камней в желчном пузыре и желчных протоках и развитие желчнокаменной болезни. Этиология. Причины дисхолии разнообразны: воспалительные процессы, дискинезия желчного пузыря, желчных протоков, заболевания пищевого канала, избыточное содержание холестерина в пище, нарушение обмена веществ (особенно холестеринового, билирубинового). Патогенез. Одним из основных механизмов возникновения ли-тогенной желчи является снижение холатохолестеринового и леци-тинохолестеринового индексов (отношения желчных кислот и лецитина к холестерину желчи). Это может быть вызвано уменьшением печеночно-кишечного кругооборота желчных кислот при патологии кишок и изменении в них микрофлоры, угнетением синтеза желчных кислот в печени (при понижении активности 7а-гидроксилазы), ускорением их всасывания слизистой оболочкой воспаленного желчного пузыря, уменьшением содержания лецитина и увеличением синтеза холестерина. При уменьшении концентрации желчных кислот и лецитина, обеспечивающих взвешенное состояние холестерина, холестерин выпадает в осадок и дает начало образованию холестериновых камней. Инфекция, застой желчи также способствуют процессу камнеобразования, так как сопровождаются изменением свойств желчи — сдвигом рН в кислую сторону, снижением растворимости солей, выпадением их в осадок, коагуляцией белков из распадающихся клеток. Помимо холестериновых образуются пигментные (при гемолизе эритроцитов), известковые и сложные камни (например, холестериново-пигментно-известковые). Камни обусловливают нарушение желчевыделения и развитие механической желтухи. 4. - НАРУШЕНИЯ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ - Постоянство рН внутренней среды является необходимым условием существования высших организмов. Оно обеспечивается определенным соотношением кислот и оснований (кислотно-основное состояние — КОС) в биологических средах, при нарушении которого (выход рН за пределы 6,8—7,8) организм погибает. Нарушения КОС наблюдаются при многих заболеваниях, отягощают их течение и подлежат коррекции (рис. 14.10). В зависимости от направления сдвига рН (водородного показателя) крови, нарушения кислотно-основного состояния подразделяются на ацидоз и алкалоз. Если рН крови не выходит за пределы нормы (7,35-7,45), ацидоз или алкалоз называется компенсированным. Если же регуляторные механизмы недостаточны и отклонения рН становятся выраженными, то такие состояния называются декомпенсированными. По механизму развития ацидоз или алкалоз бывает газовым (респираторным), развивающимся при нарушении обмена и транспорта СО2, и негазовым (метаболическим), который возникает при накоплении в организме нелетучих продуктов кислого и основного характера. Устранение сдвига рН в организме осуществляется с помощью физико-химических и физиологических механизмов регуляции. Первыми, наряду с разведением кислот и оснований внеклеточной жидкостью, включаются буферные системы крови. Биологический буфер состоит из кислого (донор Н+) и основного (акцептор Н+) компонентов, соотношение между которыми при нормальном рН является величиной постоянной. Исходя из этого, соляная кислота, например, является более сильной, чем угольная, а анион С1~ по сравнению с НСО^ обладает менее выраженными основными свойствами, так как слабее удерживает возле себя ионы водорода. Основными буферами организма являются четыре: гидрокарбонатный H2CO3/NHCO3 = 1/19, который действует в основном в крови; фосфатный NaH2PO4/Na2HPO4 = 1/4 — в почках и других тканях; белковый (NH2 -R - СООН) и гемоглобиновый НвО2УНв. В зависимости от того, где функционирует буфер — в жидкой среде или клетках, в состав его компонентов будет соответственно входить Na или К. Гидрокарбонатный буфер не обладает большой емкостью, однако является самым лабильным из буферов. Поэтому определение его компонентов в качестве индикаторов КОС (напряжение СО2 в крови, отражающее концентрацию угольной кислоты, и содержание гидрокарбоната) имеет большое диагностическое значение. Буферные свойства белков связаны с их амфолитностью. В щелочной среде белки функционируют как кислоты, отдавая (взамен на Na+ и К+) ионы водорода от своих карбоксильных групп. В кислой среде, выполняя роль оснований, они работают наоборот; ионы водородапри этом могут также связываться группой NH2, превращая ее в NH^. Самым емким буфером является гемоглобиновый. На его долю приходится до 75% всей буферной емкости крови. Гемоглобин, как известно, является белком — амфолитом, буферные свойства которого в основном связаны с существованием двух его форм: окисленной и восстановленной. В окисленной форме гемоглобин проявляет свои кислотные свойства (т.е. способность диссоциировать с отдачей Н+-ионов) и в 70—80 раз сильнее, чем восстановленный. Вместо отданных ионов водорода он связывает соответственно больше, чем восстановленный, ионов калия из КНСО3, находящегося в эритроцитах. Восстановленный Нв, выполняющий роль основания, наоборот, присоединяет ионы водорода и отдает ионы калия. Кроме того, 10—15% углекислого газа из тканей гемоглобин транспортирует в виде нестойкого соединения карбогемоглобина. При необходимости этот процент может увеличиваться до 30. Главные клеточные буферы — это белковый и фосфатный. Буферная система способна нейтрализовать избыток как кислот, так и оснований в организме, переводя их в форму, удобную для выведения. Так как продукты этих реакций тоже являются кислотами и основаниями, хотя и более слабыми, сдвиг рН только смягчается, но не ликвидируется. Полная нормализация кислотно-основного состояния происходит только с помощью физиологических механизмов компенсации, которые выводят кислоты и основания из организма и восстанавливают нормальное соотношение компонентов буферных систем. Это происходит в основном вследствие быстрого включения дыхательного механизма (обеспечивается выделение летучих продуктов) и почек (выводятся нелетучие вещества). Значительно меньшую роль в этом играют желудок, кишки, кожа. Участие легких в восстановлении рН выражается в изменении их вентиляции, интенсивность которой регулируется рСО2 и рН крови. Почки осуществляют регуляцию содержания кислот и оснований в организме с помощью трех основных процессов: 1. Ацидогенез (секреция Н+-ионов эпителием канальцев нефрона и выведение их с мочой путем преобразования основных фосфатов в кислые, а также экскреция слабых органических кислот). Секреция Н+-ионов обеспечивается сложной работой эпителия канальцев нефрона, где постоянно с участием угольной карбоангидразы из СО2 и воды происходит образование угольной кислоты, которая затем диссоциирует на ионы водорода, активно секретируемые в просвет канальцев, и анионы НСО"^. Интенсивность секреции Н+-ионов зависит от количества СО2 в клетках, а следовательно, отрС02 в крови. Для предотвращения значительного снижения рН мочи (ниже 4,5 наступает гибель эпителия почечных канальцев) свободные Н+-ионы в ней связываются. Если связывание происходит с помощью Na2HPO4 (основного компонента фосфатного буфера), то превращение его в NaH2PO4 вызывает некоторое подкисление мочи, но в меньшей степени, чем свободные ионы водорода. Освобожденные при этом катионы натрия реаб-сорбируются и уходят в кровь в составе NaHCO3. Количество кислого фосфата и слабых органических кислот (кетоновые тела, молочная, лимонная и другие кислоты) определяет титрационную кислотность мочи. 2. Аммониогенез. Усиление аммониогенеза наблюдается при значительном снижении рН мочи. Этот процесс заключается в образовании аммиака из глутамина и других аминокислот в эпителии канальцев нефрона и последующем связывании им Н+-ионов (рис. 14.11). Образовавшийся ион аммония реагирует с анионом сильной кислоты (обычно с хлором). Аммиачная соль NH4C1 выводится с мочой, не снижая значение ее рН. Аммонийный катион способен замещать значительное количество катионов натрия в моче. которые реабсорбируются в кровь взамен на секретируемые ионы водорода. и это является одним из путей сохранения гидрокарбоната в организме. 3. Реабсорбция гидрокарбоната. Фильтрующийся в нефроне гидрокарбонат обычно не появляется во вторичной моче. Проходя через канальцы, он отдает катион натрия взамен на секретируемые ионы водорода и превращается в угольную кислоту, расщепляющуюся до СО2 и воды. Моча при этом не меняет своей реакции. Источником образования Н2СО3, отдающей свои Н-ионы в обмен на Na, является СО2 крови в случае повышения его напряжения и СО2, диффундирующий из мочи. Оставшийся в клетках после отщепления ионов водорода НСО^ присоединяет реабсорбированный Na* и в виде NaHCO3 восполняет количество гидрокарбоната крови, ушедшего в мочу при фильтрации. Как видно, при реабсорбции гидрокарбоната анион НСО^ не транспортируется, а обратно в кровь поступает только Na+. Современные научные представления о регуляции рН жидкостей организма основываются главным образом на результатах исследования крови и плазмы. О концентрации Н+-ионов внутри клеток сведений недостаточно из-за отсутствия совершенных методов ее определения. Известно, что активная реакция внутриклеточной жидкости менее щелочная (рН 6,9), чем внеклеточной. При патологических состояниях может изменяться величина рН внутри клетки и вне ее, причем изменения эти нередко бывают различными. Билет № 50 1. - Патологические изменения лейкоцитов проявляются в нарушении их образования в кроветворной ткани и количественных и качественных сдвигах лейкоцитов крови. Эти изменения могут быть следствием первичного поражения клеток лейкоцитарного ряда в кроветворной ткани и кровеносном русле под влиянием разнообразных причинных факторов. Вторичные изменения лейкоцитов возникают как ответная, часто защитная, реакция организма на патологические процессы, протекающие не в самой системе крови, а в органах и тканях других систем. Главным звеном в патогенезе нарушений при патологии лейкоцитов является изменение реактивности организма, в том числе иммунологической и аллергической, что связано с функциональными особенностями лейкоцитов — их участием в процессах фагоцитоза, антителообразования, инактивации биологических активных веществ (гистамина, брадикинина, серотонина). Патологические изменения лейкоцитов могут сопровождаться трофическими нарушениями тканей, местными микроциркуляторными расстройствами. Это обусловлено тем, что одна из функций лейкоцитов заключается в снабжении регенерирующих тканей питательными веществами и стимуляторами деления клеток. Гранулоциты участвуют в развитии сосудистых нарушений как переносчики вазоактивных веществ (базофильные, эозинофильные) или же влияют на их синтез и освобождение из тканевых базофилов (нейтрофильные). Download 1.99 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling