Текст лекции множество и его элементы
Download 429.37 Kb. Pdf ko'rish
|
1-ЛЕКЦИЯ МПМ 1 КУРС А15
Разбиение на классы. Очень важный класс систем множеств получаем, если рассматриваем всевозможные разбиения какого-нибудь множества на попарно не пересекающиеся множества. Дано множество X, представленное в виде суммы попарно не пересекающихся подмножеств; множества, слагаемые нашей суммы, и являются элементами данного разбиения множества X. Пример 1. М есть множество всех учащихся в средних школах Москвы. Множество М можно разбить на попарно не пересекающиеся подмножества , например, следующими двумя способами: 1) мы объединяем в одно слагаемое всех учащихся одной и той же школы (т. е. разбиваем множество всех учащихся по школам); 2) мы объединяем в одно слагаемое всех учащихся одного и того же класса (хотя бы и разных школ). Пример 2. Пусть X есть множество всех точек плоскости; возьмем на этой плоскости какую-нибудь прямую g и разобьем всю плоскость на прямые, параллельные прямой g. Множества точек каждой такой прямой и являются теми подмножествами, на которые мы разбиваем множество X. Если данное множество X разбито на попарно не пересекающиеся подмножества , дающие в сумме множество М, то для краткости говорят просто о разбиении множества М на классы. Теорема 3. Пусть дано отображение f множества А на множество В. Полные прообразы всевозможных точек b множества В образуют разбиение множества А на классы. Множество этих классов находится во взаимно однозначном соответствии с множеством В. Эта теорема, в сущности, очевидна: каждому элементу а множества А соответствует, в силу отображения, один и только один элемент множества В, так что а входит в один полный прообраз . А это и значит, что полные прообразы точек во-первых, дают в сумме все множество А, во-вторых, попарно пересекаются. Множество классов находится во взаимно однозначном соответствии с множеством В: каждому элементу b множества В соответствует класс и каждому классу соответствует элемент b множества В. Теорема 4. Пусть дано разбиение множества А на классы. Это разбиение порождает отображение множества А на некоторое множество В, а именно на множество В всех классов данного разбиения. Это отображение получается, если заставить соответствовать каждому элементу множества А тот класс, к которому он принадлежит. Доказательство теоремы уже заключено в самой ее формулировке. Пример. Тем самым, что учащиеся Москвы распределены но школам, уже установлено отображение множества А всех учащихся на множество В всех школ: каждому учащемуся соответствует та школа, в которой он учится. При всей самоочевидности наших двух теорем факты, устанавливаемые ими, не сразу получили в математике отчетливую формулировку; получив же эту формулировку, они приобрели очень важное значение в логическом построении различных математических дисциплин и прежде всего алгебры. 3. Отношение эквивалентности . Пусть дано разбиение множества X на классы. Введем следующее определение: назовем два элемента множества X эквивалентными по отношению к данному разбиению множества X на классы, если они принадлежат к одному и тому же классу. Таким образом, если мы разобьем учащихся Москвы по школам, то двое учащихся будут «эквивалентны», если они учатся в одной и той же школе (хотя бы и в разных классах). Если же мы разобьем учащихся по классам, то двое учащихся будут «эквивалентны», если они учатся в одном и том же классе (хотя бы и различных школ). Отношение эквивалентности , только что определенное нами, очевидно, обладает следующими свойствами. Свойство симметрии (или взаимности). Если а и b эквивалентны, то эквивалентны также и а. Свойство транзитивности (или переходности). Если эквивалентны элементы а и а также b и с, то а и с эквивалентны («два элемента а и с, эквивалентные третьему эквивалентны между собою»). Наконец, мы считаем каждый элемент эквивалентным самому себе; это свойство отношения эквивалентности называется свойством рефлексивности. Три условия; рефлексивности, симметрии и транзитивности, которым подчинено отношение эквивалентности , называются условиями или аксиомами эквивалентности (а также аксиомами равенства). Итак, всякое разбиение данного множества на классы определяет между элементами этого множества некоторое отношение эквивалентности, обладающее свойствами симметрии, транзитивности и рефлексивности. Предположим теперь, что нам удалось, каким бы то ни было способом, установить некоторый признак, дающий нам возможность о некоторых парах элементов множества X говорить как о парах эквивалентных элементов. При этом мы требуем от этой эквивалентности, только чтобы она обладала свойствами симметрии, транзитивности и рефлексивности. Докажем, что это отношение эквивалентности определяет разбиение множества X на классы. В самом деле, обозначим классом данного элемента а множестиа X множество всех элементов, эквивалентных элементу а. В силу того, что наше отношение эквивалентности по предположению обладает свойством рефлексивности, каждый элемент а содержится в своем классе. Докажем: если два класса пересекаются (т. а. имеют хоть один общий элемент), то они непременно совпадают (т. е. каждый элемент одного класса является в то же время элементом другого). Мы доказали, что различные классы образуют систему попарно не пересекающихся подмножеств множества X. Далее, классы в сумме дают все множество X, так как каждый элемент множества X принадлежит к своему классу. Повторим еще раз доказанные выше результаты, объединив их в следующее предложение. Теорема 5. Каждое разбиение на классы какого-нибудь множества X определяет между элементами множества некоторое отношение эквивалентности , обладающее свойствами симметрии, транзитивности и рефлексивности. Обратно: каждое отношение эквивалентности, установленное между элементами множества X и обладающее свойствами симметрии, транзитивности и рефлексивности, определяет разбиение множества X на классы попарно эквивалентных между собой элементов. Download 429.37 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling