Xosmas integrallar
Riman integrali tushunchasi chegaralangan va kesmada aniqlangan funksiyalar uchun berilgan edi. Chegaralanmagan funksiyalardan va cheksiz oraliqlar bo’yicha ham integral tushunchasini kiritish masalasi haqidagi savol ham tabiiy ravishda tug’iladi.
1.Cheksiz oraliq bo’yicha integral tushunchasi funksiyani oraliqda qaraylik. Bu funksiya kesmada Riman ma’nosida integrallanuvchi, ya’ni
integral mavjud.
ham mavjud. Bu limit funksiyadan oraliq bo’yicha olingan integral deyiladi va
ko’rinishda yoziladi. – sonini funksiya grafigi va koordinata o’qlari bilan chegaralangan figuraning yuzasi sifatida qarash mumkin.
Endi cheksiz oraliq bo’yicha olingan integral tushunchasini kiritamiz.
funksiya oraliqda aniqlangan bo’lsin. Bu funksiya kesmada Riman ma’nosida integrallanuvchi, ya’ni
integral mavjud bo’lsin. Agar
mavjud bo’lsa, u holda bu limit funksiyadan oraliq bo’yicha olingan
Do'stlaringiz bilan baham: |