Alisher navoiy nomidagi samarqand davlat universiteti hisoblash usullari kafedrasi
Kramer koidasi bilan n-ta noma’lumli n tenglamalar sistemasini yechish uchun
Download 5.01 Kb. Pdf ko'rish
|
72. Kramer koidasi bilan n-ta noma’lumli n tenglamalar sistemasini yechish uchun nechta arifmetik amallarni bajarish lozim: n! n 2 n ta (n+1) ma (n+m)! 73. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalalarni eng kichik kvadratlar usuli bilan yechganda masala kuyidagi masalaga keltiriladi: Chizikli tenglamalar sistemasini yechish Chizikli bulmagan tenglamalar sistemasini yechish Oddiy differensial tenglama uchun Koshi masalasini yechish Integro-differensial tenglamani yechish 74. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalalarni eng kichik kvadratlar usuli bilan yechganda: Tafovut funksiyasining kvadrati integrali yoki yigindisi minimallashtiriladi Bazis funksiyalar tafovut funksiyasiga ortogonal kilib tanlanadi Berilgan nuktalarda tafovut funksiyasi minimallashtiriladi 290 Bazis funksiyalari minimallashtiriladi. 75. Agar uch diagonalli ChATS ni yechish kandaydir 0 i i da progonka usuli tugunligi yetarli shartli 0 0 0 i i i bulsa, 2 2 1 uchun: Ortikcha xisoblanadi Uz kuchida koladi 0 i i da bajarilishi kerak 0 i i da bajarilishi kerak 76. Oddiy differensial tenglamalarni yechish Eyler formulasini kursating: i i i y y y 1 ) , . . . , 2 , 1 , 0 ( ) , ( n i y x f h y i i i i i i y y y 1 i i i y y y 1 1 i i i y y y 1 1 77. Birinchi tartibli ayirmali xosila approksimasiyasi lokal xatoligi kuyidagilardan kaysi birida keltirilgan ( h -tur kadami): ); ( ), ( ), ( 2 0 h O v v h O v v h O v v x x x ); ( ), ( ), ( 2 2 2 0 h O v v h O v v h O v v x x x ); ( ), ( ), ( 0 h O v v h O v v h O v v x x x ); ( ), ( ), ( 0 2 h O v v h O v v h O v v x x x 78. Kuyidagi shartlar berilgan: a) Ayirmali sxema berilgan differensial masalani approksimasiyalaydi b) Ayirmali sxema tugun v) Ayirmali sxema yechimi dastlabki differensial masala yechimiga yakinlashadi. Unda ushbu urinli: a ), b) lardan v) kelib chikadi a) , v) lardan b) kelib chikadi b), v) lardan a) kelib chikadi v,) a,) b) lardan boglik emas. 79. 2 1 2 1 , , , v v v y y y lar berilgan, bu yerda 2 2 1 , , , H v y H y y 2 ) ( H v y ni toping, bu yerda , - berilgan sonlar: 2 2 1 1 , y y ; , 2 1 v y ; , 1 2 y v ; , 2 1 2 1 v v y y 80. Zeydel metodining asosiy formulasini kursating: n i j k j ii ij k j i j ii ij i i k i x a a x a a a b x 1 ) ( ) 1 ( 1 1 1 ) 1 ( n i j k j ii ij k j i j ii ij i i k i x a a x a a a b x 1 ) ( ) 1 ( 1 1 1 ) 1 ( 1 1 ) 1 ( ) 1 ( 1 ) 1 ( i j k j ii ij k j n j ii ij k i x a a x a a x i k n k ii ij i i k x a a b x 1 291 81. Nostasionar bir ulchamli chizikli issiklik utkazuvchanlik tenglamasi uchun bir parametrli ayirmali sxema J j n i y y y y j i j i j i j i j i 0 , 0 , ) ) 1 ( ( 1 1 ning kanday kiymatida oshkor sxema buladi: 0 1 5 , 0 1 82. Bir ulchamli nostasionar chizikli issiklik utkazuvchanlik tenglamasi uchun J j n i y y y y j i j i j i j i j i 0 , 0 , ) ) 1 ( ( 1 1 bir parametrli ayirmali sxema kuyidagi xollardan kaysi birida ) ( 2 2 h O tartibli approksimasiyaga ega: 12 5 , 0 , 12 2 2 h f h f 12 5 , 0 , 2 h f 1 , 12 2 f h f 1 0 , f 83. Ikki katlamli sxema h i i i i H y K i Ay y y B 0 1 , 1 , 0 , kanonik kurinishni umumiy h i i i H y K i y B y B 0 2 1 1 , 1 , 0 , kurinishdan keltirib chikarishdan A, V chizikli operatorlarni V 1 , V 2 lardan boglik xolda aniklang: (Bu yerda i n i i i y y y y , . . . , , 1 0 ). 2 1 2 1 4 , 2 2 B B B B B A 2 1 2 1 , 2 B B B B B A 2 1 2 1 2 , B B B B B A 2 1 2 1 , B B B B B A 84. Berilgan sistema uchun iterasiya metodini kullash uchun kulay formasini kursating: n n n n n n n n n n n x x x x x x x x x x x x 1 1 , 2 2 1 1 2 2 3 23 1 21 2 1 1 3 13 2 12 1 ... ... ... ) ( ) 1 ( k k x x b x A 292 x A x 85. Chizikli tenglamalar sistemasini yechishning iterasiya metodining vektorli kurinishini kursating: x x ) ( ) 1 ( k k x x b x A A x x k n n k n ) ( ) 1 ( 86. Issiklik utkazuvchanlik tenglamasi uchun 1 0 , 1 0 ), ) 1 ( ( 1 1 J j n i y y y y j i j i j i j i ikki katlamli ayirmali sxemani 0 1 1 j i j i j i Ay y y B kanonik kurinishga keltirishda A, V operatorlarni aniklang: E B A , A E B E A 2 , 2 E B A , A E B A , 87. Tulkin tenglamasi ) , ( 2 2 2 2 t x f x u t u uchun bir parametrli ayirmali sxema y y y y t t ) 2 1 ( € oshkor deyiladi, agar … 0 1 5 , 0 1 88. Tulkin tenglamasi umumiy chegaraviy masalasi uchun mos ), ( ~ ) 0 , ( ), ( ) 0 , ( ), ( ), ( ) 2 1 ( € 0 0 2 1 0 x u x y x u x y t y t y y y y y t n t t AS da ) ( ~ ) 0 , ( 0 x u x y t shart, dastlabki ) ( ) 0 , ( 0 x u t x u differensial masala shartini approksimasiyaladi. Approksimasiya anikligi ) ( 2 O kilib kullansa ) ( ~ 0 x u ni ) , ( ), ( ), ( 0 0 t x f x u x u Lar orkali aniklang: )) 0 , ( ) ( ( 5 , 0 ) ( ) ( ~ 0 0 0 x f x u x u x u ) 0 , ( ) ( ) ( ) ( ~ 0 0 0 x f x u x u x u )) 0 , ( ) ( ( 5 , 0 ) ( ) ( ~ 0 0 0 x f x u x u x u ) ( ) ( ) ( ~ 0 0 0 x u x u x u 89. Umumlashgan daraja formulasini kursating: x [n] = x (x-h) (x-2h) … [x-(n-1)h] x [n-1] = x (x-h) (x-2h) … [x-(n-1)h] x [n+1] = x (x-h) (x-2h) … [x-(n-1)h] x [n] = x (x-h) (x-3h) … [x-(n+1)h] 293 90. Agar xisoblanayotgan funksiyaning kiymati jadvalning boshida bulsa kaysi interpolyasion formulani kullash urinli: Nyutonning 1-chi formulasini Lagranj formulasini Nyutonning 2- chi formulasini Gaussning 1-chi formulasini 91. Bir ulchovli tulkin tenglamasi umumiy chegaraviy masalasi uchun mos 2 1 2 2 1 1 2 1 1 1 0 1 2 1 1 1 1 2 ) 2 1 ( 2 , , 1 , 1 , 1 , 1 , , , 2 1 j j j i j i j n j i j i j i j i y y y y F h J j n i y y F y y y Ayirmali tenglamani yechish uchun progonka usuli tugunligining yetarlilik sharti kuyidagilardan kaysi biri xisoblanadi: 0 1 5 , 0 0 , 1 92. Iterasiya metodi yakinlashuvchi bulishi uchun berilgan sistema A matrisaning diagonal elementlari kaysi shartni kanoatlantirishi kerak: j i ij ii a a j ij ii a a j ij ii ii a a a 93. Umumiy uch katlamli h n n N n n n n n n n H y y y y y y y K n y B y B y B ..., , , , , . . . , , , 1 , 1 , 1 0 1 0 1 0 1 1 2 Download 5.01 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling