Kurs ishining dolzarbligi
Chegaralangan funksiya. Qavariq va botiq funksiyalar haqi-da tushuncha
Download 483.85 Kb.
|
sobirova04.21bir necha
- Bu sahifa navigatsiya:
- V to`plamda qavariq (botiq) funksiya
3. Chegaralangan funksiya. Qavariq va botiq funksiyalar haqi-da tushuncha.
V1 D(y) nuqtalar to`plamida berilgan y = f (x) funksiyaning V1 da erishadigan qiymatlari to`plami yuqoridan (quyidan) chegaralangan bo`lsa, funksiya V1 da yuqoridan (quyidan) chegaralangan deyiladi. y = f (x) funksiyaning yuqoridan (quyidan) chegaralanganligi, shunday bir K son mavjudligini anglatadiki, barcha M є V1 nuqtalar uchun f (M) ≤ K (f (M) ≥ K) tengsizlik o`rinli bo`ladi. V1 D(y) nuqtalar to`plamida ham quyidan va ham yuqoridan che-garalangan funksiyaga, V1 to`plamda chegaralangan funksiya deb ataladi. Ushbu holda, agar V1 = D(y) bo`lsa, y = f (M) funksiya aniqlanish sohasida chegaralangan deyiladi va uning qiymatlari to`plami chegaralangan sonlar to`plamidan iborat bo`ladi. Agar y = f (M) funksiya V1 to`plamda yuqoridan (quyidan) chegaralanmagan bo`lsa, V1 to`plamga tegishli {Mk} nuqtalar ketma-ketligi mavjudki, ( ) munosabat o`rinlidir. Misollar: 1) bir o`zgaruvchili y = x2 funksiya aniqlanish sohasi R1 da quyidan chegaralangan funksiyadir, chunki E(y)=[0; ∞); 2) ikki o`zgaruvchili funksiya o`z aniqlanish sohasi D(y) = {M(x1; x2) є R2 | x12 + x22 ≤ 1} to`plamda chegaralangandir, chunki E(y) = [0; 1]. y = f (M) funksiya qavariq V Rn nuqtalar to`plamida aniqlangan bo`lsin. V qavariq to`plamga tegishli har qanday ikki M1(x1; x2; …; xn) va M2(u1; u2; …; un) nuqtalar va ixtiyoriy 0 ≤ α ≤ 1 son uchun f (P) ≤ α f (M1) + (1-α) f (M2) (f (P) ≥ α f (M1) + (1–α) f (M2)) tengsizliklar o`rinli bo`lsa, bu yerda R(α x1 +(1–α)u1; α x2 +(1–α)u2; …; αxn +(1-α)un), u holda, y = f (M) funksiya V to`plamda qavariq (botiq) funksiya deyiladi. Masalan, y = x2 funksiya R1 da qavariq funksiyaga misol bo`lsa, y = -x2 funksiya esa R1 da botiq funksiyaga misol bo`ladi. n o`zgaruvchili chiziqli y = a1x1 + a2x2 + … +anxn funksiya Rn fazoda bir vaqtda ham qavariq va ham botiq funksiyadir. Qavariq funksiyalar quyidagi xossalarga ega: 1. –f (M) funksiya V to`plamda botiq bo`lgandagina, f (M) funksiya V da qavariq funksiya bo`ladi. 2. f1(M) va f2(M) funksiyalar V to`plamda qavariq bo`lsa, ularning ixtiyoriy nomanfiy k1 va k2 koeffitsientli chiziqli k1f1(M) + k2f2(M) kombinatsiyasi V to`plamda qavariq bo`ladi. 3. f (M) funksiya V to`plamda qavariq bo`lib, {M є V | f (M) ≤ b} to`plam bo`sh bo`lmasa, bu yerda b ixtiyoriy son, u holda to`plamning o`zi ham qavariq to`plamdir. Botiq funksiyalar ham yuqoridagi xossalarga o`xshash xossalarga ega. Download 483.85 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling