Методы интегрирования


Download 111.44 Kb.
bet1/6
Sana22.06.2023
Hajmi111.44 Kb.
#1647359
TuriЗадача
  1   2   3   4   5   6
Bog'liq
Методы интегрирования


Методы интегрирования
ПЛАН

  1. Метод непосредственного интегрирования

  2. Метод подстановки

  3. Метод подведения под знак дифференциала

  4. Метод интегрирования по частям

Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.
В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.
Метод непосредственного интегрирования
Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.
Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.

Метод подстановки


Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.
Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.
Если нам приходится интегрировать функции с иррациональностью вида xm(a+bxn), где значения m, n, p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.
Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.

Download 111.44 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling