Reja predikatlar va kvantlar. Predikatlar hisoblash formulasi haqida tushuncha. Tor predikat hisobining aksiomatik tasviri. Tabiiy tor predikatlar hisobi. Aristotel sillogistikasining tor predikat hisobiga singdirilishi


Isbot: F(y) faraz x F(x) B : 1 (37) formulasini isbotlaymiz: p x (p F(x))


Download 47.09 Kb.
bet7/8
Sana24.03.2023
Hajmi47.09 Kb.
#1290198
1   2   3   4   5   6   7   8
Bog'liq
ПЛАН

Isbot:

  1. F(y) faraz

x F(x) B : 1
(37) formulasini isbotlaymiz:


p x (p F(x))


Isbot:

  1. p Faraz

  2. p F(x) ID: 1

x p F(x) B : 2
Endi (38) formulani isbotlaymiz:

x F(x) x F(x)




Isbot:

  1. x F(x) faraz

2) F(y) Y : 1
x F(x) B : 2


5. Aristotel sillogistikasining tor predikat hisobiga singdirilishi.

11- asr oxirigacha asosiy rol A, E, I, O kategoriyali deb nomlangan to'rt turdagi hukmlarga berilgan. A ramziy taklifi " Hammasi S - P " quyidagicha yozilgan:


x ( S(x) P(x)) (39)




E hukmi "Yo'q S emas P ":
x (S(x) P(x)) (40) yoki boshqacha x ( S(x) (x)) (40 1 )
Hukm I "Some S are P ":
x (S(x) P(x)) (41)
Hukm O "Ba'zi S P emas ":
x (S(x) (x)) (42)
Keling, to'g'ridan-to'g'ri xulosa chiqarishning ba'zi usullarini isbotlaylik.
ASP ISP rejimi , (39)-(42) dan foydalanib, biz quyidagicha yozamiz:
x ( S(x) P(x)) x (S(x) P(x)) (43)


Isbot:

  1. x ( S(x) P(x)) Faraz

  2. S(y) P(y) Y : 1

  3. S(y) faraz

  4. P(y) PO: 2.3

  5. S(y) P(y) VK: 3.4

x (S (x) P (x)) B : 5
ESP OSP rejimi yana (39-42) yordamida quyidagicha yoziladi:
x ( S(x) (x)) x (S(x) (x)) (44)
Isbot:

  1. x ( Sx (x)) Faraz

  2. x ( S(x) (x)) (S(y) (y)) aksiomaga almashtirish e)

  3. S(y) (y) PO: 1.2

  4. S(y) faraz

  5. (y) PO: 3.4

  6. S(y) (y) VK: 4.5

x S(x) (x) B : 6
ASP IPS rejimi quyidagicha yozilgan:
x ( Sx (x)) x (S (x) (x)) (45)
Isbot:

  1. x ( S(x) (x)) Faraz

  2. x ( S(x) (x)) (S(y) (y)) aksiomaga almashtirish e)

  1. S(y) (y) PO: 1.2

  2. S(y) faraz

  3. (y) PO: 3.4

  4. S(y) (y) VK: 4.5

x S(x) (x) B : 6

To'g'ridan-to'g'ri xulosa chiqarishning boshqa usullari ham xuddi shunday tarzda yozilgan va isbotlangan.


Keling, sillogizmlarning ma'lum usullarining to'g'riligini isbotlaylik.
AMP ASM ASP sillogizmining birinchi figurasining birinchi rejimini quyidagicha yozamiz:

x (M(x) P(x)) x (S(x) → M(x)) → x(S(x) → P(x)) (46)




Isbot:

  1. x (M(x) P(x)) x (S(x) → M(x)) Faraz

  2. x (M(x) P(x)) Buyuk Britaniya: 1

  3. x (S(x) → M(x)) Buyuk Britaniya: 1

  4. M(y) R(y) Y : 2

  5. S(y) M(y) Y : 3

  6. S(y) P(y) (29): 4.5

x(S(x) → P(x)) B : 6
Sillogizmning ikkinchi figurasining birinchi modasining to'g'riligini isbotlaylik


EPM ASM→ESP.

(39)-(42) dan foydalanib, uni quyidagi shaklda yozamiz:


x (P(x) M(x)) x (S(x) → M(x)) → x(S(x) → P(x)) (47)




Isbot:

  1. x (P(x) M(x)) x (S(x) → M(x)) Faraz

  2. x (P(x) M(x)) Buyuk Britaniya: 1

  3. x (S(x) → M(x)) Buyuk Britaniya: 1

  4. R(y) M(y) Y : 2

  1. S_ (y) M (y) Y : 3

  2. M(y) R(y) (30): 4

  3. M(y) R(y) (9): 6

  4. S (y) P (y) (29): 5.7

x(S(x) → P(x)) B : 8
Nihoyat, sillogizmning uchinchi figurasining birinchi uslubini isbotlaymiz



Download 47.09 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling