Sonli va funksional ketma-ketliklar. Ketma-ketlikning limiti, uzluksizligi, uzulish turlari


Natural argumentli funksiya va uning limiti


Download 370.72 Kb.
bet5/12
Sana08.01.2022
Hajmi370.72 Kb.
#238719
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
Sonli va funksional ketma-ketliklar. Ketma-ketlikning limiti, uz

1.2. Natural argumentli funksiya va uning limiti. va to’plamlar berilgan bo’lib, – har bir natural songa biror haqiqiy sonni mos qo’yuvchi qoida yoki usul bo’lsin: . Bu holda to’plamda natural argumentli funksiya aniqlangan deyiladi va kabi belgilanadi.

Agar funksiya berilgan bo’lsa, u holda uning argumenti, yoki indeksini o’zgaruvchi mos qiymatining nomeri deb qarash mumkin. Shunday qilib, – funksiyaning birinchi qiymati, – ikkinchi qiymati, – uchinchi qiymati va h.k. Biz har doim qiymatlar to’plami ni natural ketma-ketlikka o’xshash nomerlarning ortishi bo’yicha tartiblangan, ya’ni

(1.1)

sonlar ketma-ketligi shaklida tasavvur qilamiz. (1.1) ketma – ketlik qisqacha kabi belgilanadi. Ketma-ketlikning qiymatlar to’plami chekli yoki cheksiz bo’lishi mumkin, lekin shunday bo’lsa-da ketma – ketlikning elementlari har doim cheksiz ko’p bo’ladi.



Biz bundan keyin, qulaylik uchun, natural argumentli funksiyani sonli ketma-ketlik deb qaraymiz. Masalan, agar funksiya

formulalardan birortasi bilan berilgan bo’lsa, ularga mos ketma-ketliklar quyidagi shaklda bo’ladi:



va hokazo.

Yuqoridagi keltirilgan misollardan ko’rinadiki, ba’zi ketma- ketliklarning umumiy hadlari aniq formulalar orqali ifodalanib, ularning hamma hadlari shu formulalar orqali topilsa, ba’zi ketma- ketlikning hadlarini ma’lum bir qoidalar yordamida topish mumkin, Ba’zi hollarda ketma-ketliklarning berilishi, uning hadlarining nomini aytish bilan amalga oshiriladi.

Masalan, 1)- 5)- misollarda ketma-ketlikning umumiy hadi aniq formula orqali ifodalangan, 6) misolda ketma-ketlikning dastlabki va hadlari berilgan holda, qolgan hadlarini rekurrent formula orqali topiladi. 6)- misolda ketma-ketlik rekurrent formula orqali topilgan sonlar Fibonachchi sonlari deyiladi. 7) misolda ketma-ketlikning umumiy hadi so’zlar orqali ifoda qilingan.



(1.2)

(1.3)

ketma-ketliklar berilgan bo’lsin. (1.2) va (1.3) ketma-ketliklarning yig’indisi (ayirmasi), ko’paytmasi, bo’linmasi (nisbati) deb, mos ravishda







ketma-ketliklarga aytiladi va ular mos ravishda kabi belgilanadi. (1.2) va (1.3) ketma-ketliklar nisbatining ta’rifida uchun deb faraz qilinadi. Agar ketma-ketlikning chekli sondagi elementlari nolga teng bo’lsa, u holda ketma-ketlikni, ning nolga teng bo’lmagan hadlaridan boshlab aniqlash kerak bo’ladi.

Endi ketma-ketlikning chegaralanganligi tushunchalari bilan tanishamiz.




Download 370.72 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling