Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
a
Z −a f (x)ψ + (x, µ 2k−1 )dx 2 , (2.4.14) ¯ ¯ ¯ ¯ ¯ ¯ ∞ Z −∞ f (x)y(x, µ 2k )dx ¯ ¯ ¯ ¯ ¯ ¯ 2 = 4 Im a Z −a f (x)ψ + (x, µ 2k )dx 2 (2.4.15) tеngliklarni kеltirib chiqaramiz. (2.4.8), (2.4.13)-(2.4.15) tengliklardan fоydalanib, (2.4.11) Parsеval tеngligini quyidagi ko‘rinishda yozamiz: ∞ Z −∞ f 2 (x)dx = = 1 π ∞ X k=−∞ π Z 0 |ψ + (x, µ 2k−1 )| 2 dx −1 Re a Z −a f (x)ψ + (x, µ 2k−1 )dx 2 [α(µ 2k ) − α(µ 2k−1 )]+ + 1 π ∞ X k=−∞ π Z 0 |ψ + (x, µ 2k )| 2 dx −1 Im a Z −a f (x)ψ + (x, µ 2k )dx 2 [α(µ 2k+1 ) − α(µ 2k )]. Bu tеnglikda Stiltеs intеgralining ta’rifini inоbatga оlib, N → ∞ da limitga o‘tsak, ushbu ∞ Z −∞ f 2 (x)dx = 1 π Z E π Z 0 |ψ + (x, λ)| 2 dx −1 Re a Z −a f (x)ψ + (x, λ)dx 2 dα(λ)+ + 1 π Z E π Z 0 |ψ + (x, λ)| 2 dx −1 Im a Z −a f (x)ψ + (x, λ)dx 2 dα(λ) (2.4.16) tеnglik kеlib chiqadi. Bu yеrda E = {λ : −2 ≤ ∆(λ) ≤ 2} = [λ 0 , λ 1 ] ∪ [λ 2 , λ 3 ] ∪ ... ∪ [λ 2n , λ 2n+1 ] ∪ ... . (2.4.16) tеnglikni quyidagi ko‘rinishda yozish mumkin: ∞ Z −∞ f 2 (x)dx = 1 π Z E π Z 0 |ψ + (x, λ)| 2 dx −1 ¯ ¯ ¯ ¯ ¯ ¯ ∞ Z −∞ f (x)ψ + (x, λ)dx ¯ ¯ ¯ ¯ ¯ ¯ 2 dα(λ). 125 Agar (2.4.10) fоrmuladan fоydalansak, Parsеval tеngligi hоsil bo‘ladi: ∞ Z −∞ f 2 (x)dx = 1 π Z E ¯ ¯ ¯ ¯ ¯ ¯ ∞ Z −∞ f (x)ψ + (x, λ)dx ¯ ¯ ¯ ¯ ¯ ¯ 2 s(π, λ) p 4 − ∆ 2 (λ) dλ. (2.4.17) Analitik ildizning arifmеtik ildiz оrqali yozilgan ifоdasini ishlatsak, Parsеval tеng- ligi quyidagi ko‘rinishni оladi: ∞ Z −∞ f 2 (x)dx = 1 π ∞ X n=0 λ 4n+3 Z λ 4n+2 ¯ ¯ ¯ ¯ ¯ ¯ ∞ Z −∞ f (x)ψ + (x, λ)dx ¯ ¯ ¯ ¯ ¯ ¯ 2 s(π, λ) |4 − ∆ 2 (λ)| 1 2 dλ− − 1 π ∞ X n=0 λ 4n+1 Z λ 4n ¯ ¯ ¯ ¯ ¯ ¯ ∞ Z −∞ f (x)ψ + (x, λ)dx ¯ ¯ ¯ ¯ ¯ ¯ 2 s(π, λ) |4 − ∆ 2 (λ)| 1 2 dλ. (2.4.18) Parseval tengligidan foydalanib, berilgan ∀ f (x) ∈ C ∞ 0 (−∞, +∞) finit funksiyani Floke yechimlari bo‘yicha Furye integraliga yoyish mumkin: f (x) = 1 π Z E s(π, λ) p 4 − ∆ 2 (λ) F (λ)ψ + (x, λ)dλ. (2.4.19) Bu yerda F (λ) = ∞ Z −∞ f (x)ψ + (x, λ) dλ. (2.4.20) Xususan, q(x) = 0 bo‘lgan holda ψ ± (x, λ) = e ±i √ λ x , s(π, λ) p 4 − ∆ 2 (λ) = 1 2 √ λ , bo‘lgani uchun (2.4.19)+(2.4.20) yoyilma formulasi quyidagi ko‘rinishni oladi: f (x) = 1 π ∞ Z 0 +∞ Z −∞ f (x)e −i √ λ x dx e i √ λ x dλ 2 √ λ . 5-§. Floke yechimining yana bir ko‘rinishi Ushbu Ly ≡ −y 00 + q(x)y = λy, x ∈ R (2.5.1) Xill tenglamasini qaraylik. Bu yerda q(x)- haqiqiy, uzluksiz, πdavrli funksiya. Agar (2.5.1) differensial tenglamaning c(0, λ) = 1, c 0 (0, λ) = 0 va s(0, λ) = 0, 126 s 0 (0, λ) = 1 boshlang‘ich shartlarni qanoatlantiruvchi yechimlarini mos ravishda c(x, λ) va s(x, λ) orqali belgilasak, u holda Xill tenglamasining ψ ± (x, λ) = c(x, λ) + m ± (λ)s(x, λ) (2.5.2) Veyl (Floke) yechimlari shu bobning birinchi paragrafida o‘rganilgan edi. Bunda m ± (λ) = s 0 (π, λ) − c(π, λ) 2s(π, λ) ∓ i p 4 − ∆ 2 (λ) 2s(π, λ) , (2.5.3) ∆(λ) = c(π, λ) + s 0 (π, λ). Shu bilan bir qatorda quyidagi −y 00 + q(x + t)y = λy, x ∈ R, t ∈ R (2.5.4) siljitilgan argumentli Xill tenglamasining c(0, λ, t) = 1, c 0 (0, λ, t) = 0 va s(0, λ, t) = 0, s 0 (0, λ, t) = 1 bоshlang‘ich shartlarni qanоatlantiruvchi yechim- larini mos ravishda c(x, λ, t) va s(x, λ, t) orqali belgilaymiz. Lemma 2.5.1. Quyidagi c(π, λ, t) = c(π, λ)c(t, λ)s 0 (t, λ) + c 0 (π, λ)s(t, λ)s 0 (t, λ)− −s(π, λ)c(t, λ)c 0 (t, λ) − s 0 (π, λ)s(t, λ)c 0 (t, λ) (2.5.5) s(π, λ, t) = s(π, λ)c 2 (t, λ) + [s 0 (π, λ) − c(π, λ)]s(t, λ)c(t, λ)− −c 0 (π, λ)s 2 (t, λ) (2.5.6) c 0 (π, λ, t) = −s(π, λ)c 02 (t, λ) − [s 0 (π, λ) − c(π, λ)]c 0 (t, λ)s 0 (t, λ)+ +c 0 (π, λ)s 02 (t, λ) (2.5.7) s 0 (π, λ, t) = −c(π, λ)s(t, λ)c 0 (t, λ) − c 0 (π, λ)s(t, λ)s 0 (t, λ)+ +s(π, λ)c(t, λ)c 0 (t, λ) + s 0 (π, λ)c(t, λ)s 0 (t, λ) (2.5.8) ayniyatlar o‘rinli. Isbot. Ushbu ½ c(t + π, λ) = c(π, λ)c(t, λ) + c 0 (π, λ)s(t, λ), s(t + π, λ) = s(π, λ)c(t, λ) + s 0 (π, λ)s(t, λ), ½ c(x, λ, t) = s 0 (t, λ)c(x + t, λ) − c 0 (t, λ)s(x + t, λ), s(x, λ, t) = −s(t, λ)c(x + t, λ) + c(t, λ)s(x + t, λ), formulalar bizga birinchi bobdan ma’lum. Bu formulalarga ko‘ra c(π, λ, t) = s 0 (t, λ)[c(π, λ)c(t, λ) + c 0 (π, λ)s(t, λ)]− −c 0 (t, λ)[s(π, λ)c(t, λ) + s 0 (π, λ)s(t, λ)] = c(π, λ)c(t, λ)s 0 (t, λ)+ +c 0 (π, λ)s(t, λ)s 0 (t, λ) − s(π, λ)c(t, λ)c 0 (t, λ) − s 0 (π, λ)s(t, λ)c 0 (t, λ). 127 s(π, λ, t) = −s(t, λ)[c(π, λ)c(t, λ) + c 0 (π, λ)s(t, λ)]+ +c(t, λ)[s(π, λ)c(t, λ) + s 0 (π, λ)s(t, λ)] = s(π, λ)c 2 (t, λ)+ +[s 0 (π, λ) − c(π, λ)]s(t, λ)c(t, λ) − c 0 (π, λ)s 2 (t, λ). s 0 (π, λ, t) = −s(t, λ)[c(π, λ)c 0 (t, λ) + c 0 (π, λ)s 0 (t, λ)]+ +c(t, λ)[s(π, λ)c 0 (t, λ) + s 0 (π, λ)s 0 (t, λ)] = = −c(π, λ)s(t, λ)c 0 (t, λ) − c 0 (π, λ)s(t, λ)s 0 (t, λ)+ +s(π, λ)c(t, λ)c 0 (t, λ) + s 0 (π, λ)c(t, λ)s 0 (t, λ). c 0 (π, λ, t) = s 0 (π, λ)[c(π, λ)c 0 (t, λ) + c 0 (π, λ)s 0 (t, λ)]− −c 0 (t, λ)[s(π, λ)c 0 (t, λ) + s 0 (π, λ)s 0 (t, λ)] = = −s(π, λ)c 02 (t, λ) − [s 0 (π, λ) − c(π, λ)]c 0 (t, λ)s 0 (t, λ) + c 0 (π, λ)s 02 (t, λ). Lemma 2.5.2. Ushbu s(π, λ)ψ + (t, λ)ψ − (t, λ) = s(π, λ, t), (2.5.9) s(π, λ)ψ 0 + (t, λ)ψ 0 − (t, λ) = −c 0 (π, λ, t) (2.5.10) ayniyatlar o‘rinli. Isbot. Veyl yechimlarining (2.5.2), (2.5.3) ko‘rinishlaridan foydalanib, quyidagi ko‘paytmani hisoblaymiz: s(π, λ)ψ + (t, λ)ψ − (t, λ) = s(π, λ) Ã c(t, λ) + s 0 (π, λ) − c(π, λ) − p ∆ 2 (λ) − 4 2s(π, λ) s(t, λ) ! × × Ã c(t, λ) + s 0 (π, λ) − c(π, λ) + p ∆ 2 (λ) − 4 2s(π, λ) s(x, λ) ! = = s(π, λ) µ c(t, λ) + s 0 (π, λ) − c(π, λ) 2s(π, λ) s(t, λ) ¶ 2 −s(π, λ) Ãp ∆ 2 (λ) − 4 2s(π, λ) s(x, λ) ! 2 = = s(π, λ)c 2 (t, λ) + [s 0 (π, λ) − c(π, λ)]s(t, λ)c(t, λ) − c 0 (π, λ)s 2 (t, λ) (2.5.11) Agar (2.5.6) va (2.5.11) tengliklarni taqqoslasak, (2.5.9) ayniyatni olamiz. Xuddi yuqoridagidek qilib, quyidagi s(π, λ)ψ 0 + (t, λ)ψ 0 − (t, λ) = s(π, λ) µ c 0 (t, λ) + s 0 (π,λ)−c(π,λ)− √ ∆ 2 (λ)−4 2s(π,λ) s 0 (t, λ) ¶ × × µ c 0 (t, λ) + s 0 (π,λ)−c(π,λ)+ √ ∆ 2 (λ)−4 2s(π,λ) s 0 (t, λ) ¶ = = s(π, λ) ³ c 0 (t, λ) + s 0 (π,λ)−c(π,λ) 2s(π,λ) s 0 (π, λ) ´ 2 − s(π, λ) µ√ ∆ 2 (λ)−4 2s(π,λ) s 0 (t, λ) ¶ 2 = 128 = s(π, λ)c 02 (t, λ) + [s 0 (π, λ) − c(π, λ)]c 0 (t, λ)s 0 (t, λ) − c 0 (π, λ)s 02 (t, λ) (2.5.12) munosabatni keltirib chiqaramiz. Agar (2.5.7) va (2.5.12) tengliklarni taqqoslasak, (2.5.10) ayniyat hosil bo‘ladi. Teorema 2.5.1. Xill tenglamasining ψ ± (t, λ) Veyl (Floke) yechimlari uchun ushbu ψ ± (t, λ) = s s(π, λ, t) s(π, λ) exp ∓i t Z 0 p 4 − ∆ 2 (λ) 2s(π, λ, τ ) dτ (2.5.13) tasvirlar o‘rinli. Isbot. Ushbu ψ 0 + (t, λ) ψ + (t, λ) = m(λ, t) (2.5.14) belgilashni kiritamiz. U holda m(λ, t) = c 0 (t, λ) + m + (λ)s 0 (t, λ) c(t, λ) + m + (λ)s(t, λ) (2.5.15) bo‘lib, m(λ, 0) = m + (λ), m + (λ) = s 0 (π, λ) − c(π, λ) 2s(π, λ) − i p 4 − ∆ 2 (λ) 2s(π, λ) (2.5.16) tengliklar o‘rinli bo‘ladi. Avvalo, m(λ, t) funksiyani ushbu m(λ, t) = m 1 (λ, t) + im 2 (λ, t), i = √ −1 ko‘rinishda yozib va yuqoridagi lemma 2.5.1 dan foydalanib, uning m 1 (λ, t)-haqiqiy, m 2 (λ, t)-mavhum qismlarini topamiz: m 1 (λ, t) = s 0 (π, λ, t) − c(π, λ, t) 2s(π, λ, t) , (2.5.17) m 2 (λ, t) = − p 4 − ∆ 2 (λ) 2s(π, λ, t) . (2.5.18) So‘ngra (2.5.14) tenglikdan ψ + (t, λ) = exp t Z 0 m(τ, λ)dτ (2.5.19) tenglikni hosil qilamiz. Buni (2.5.1) tenglamaga qo‘ysak m 0 + m 2 = q(t) − λ, m = m(λ, t), λ ∈ R Rikkati tenglamasi kelib chiqadi. Oxirgi tenglamani haqiqiy va mavhum qismlar- ini ajratib, ushbu m 1 (λ, t) = − 1 2 d dt (ln m 2 (t, λ)) (2.5.20) 129 munosabatni topib olamiz. Bundan foydalanib, (2.5.19) tenglikdan ψ + (t, λ) = exp ½ t R 0 m 1 (τ, λ)dτ ¾ exp ½ i t R 0 m 2 (τ, λ)dτ ¾ = = exp ½ t R 0 £ − 1 2 d dτ (ln m 2 (τ, λ)) ¤ dτ ¾ exp ½ i t R 0 m 2 (τ, λ)dτ ¾ = = s m 2 (0, λ) m 2 (t, λ) exp i t Z 0 m 2 (τ, λ)dτ (2.5.21) formulani keltirib chiqaramiz. Oxirgi tenglikni (2.5.17) va (2.5.18) munos- abatlardan foydalanib, quyidagicha yozish mumkin: ψ + (t, λ) = v u u u u t √ 4−∆ 2 (λ) 2s(π,λ) √ 4−∆ 2 (λ) 2s(π,λ,t) exp −i t Z 0 p 4 − ∆ 2 (λ) 2s(π, λ, t) dτ = = s s(π, λ, t) s(π, λ) exp −i t Z 0 p 4 − ∆ 2 (λ) 2s(π, λ, t) dτ . (2.5.22) Floke yechimining (2.5.22) ko‘rinishiga (2.5.9) ayniyatni qo‘llasak, ψ + (t, λ) = p ψ + (t, λ)ψ − (t, λ) exp −i t Z 0 p 4 − ∆ 2 (λ) 2s(π, λ)ψ + (τ, λ)ψ − (τ, λ) dτ (2.5.23) formula kelib chiqadi. Yuqoridagi hisoblashlardan ko‘rinadiki, (2.5.4) siljigan argumentli Xill tenglamasining m ± (λ, t)-Veyl-Titchmarsh funksiyasi uchun ushbu m ± (λ, t) = s 0 (π, λ, t) − c(π, λ, t) 2s(π, λ, t) ∓ i p 4 − ∆ 2 (λ) 2s(π, λ, t) (2.5.24) tenglik o‘rinli bo‘lar ekan. Endi (2.5.4) siljigan argumentli Xill tenglamasining q(x + t) potensiali N- zonali bo‘lgan holni qaraylik. Bu holda shu bobning uchinchi paragrafidagi mu- lohazalarga asoslanib, quyidagi 1 4 [4 Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling