30 Простейшие векторные поля: потенциальное, соленаидальное, гармоническое
К простейшим векторным полям относятся: соленоидальное, потенциальное игармоническое.
Определение 1: Векторное поле называется соленоидальным или трубчатым, если во всех точках поля
Соленоидальное поле не имеет ни источников, ни стоков, его векторные линии замкнуты. Поскольку div\vec{B}=0, то поле вектора магнитной индукции является соленоидальным.
Определение 2: Векторное поле называется потенциальным илибезвихревым, если во всех точках поля
Для потенциального векторного поля всегда найдется такая скалярная функция u(M) (потенциал векторного поля ), что .
Потенциал векторного поля можно найти по формуле
где – произвольная точка поля, в которой функции P, Q, R определены, С – произвольная постоянная.
Определение 3: Векторное поле называется гармоническим, если во всех точках поля и
и
т.е. поле является соленоидальным и потенциальным.
Потенциал u гармонического поля удовлетворяет уравнению Лапласа
31 Определение числового ряда, основные понятия. Необходимые и достаточные условия сходимости ряда
Пусть a1,a2,a3…an – числовая последовательность. Определение: Выражение вида a1+a2+…+an или a1,a2,a3…an – члены ряда an – n-й член ряба (общий член ряда) Сумма n первых членов ряда называется n-ной частичной суммой и обозначается Sn, Sn= Определение: Числовой ряд сходится, если сходится последовательность его частичных сумм, т.е. сущ-ет конечный предел при x∞ Sn=S. Тогда S- сумма ряды Если посл-ть Sn не имеет конечного предела, то числовой ряд расходится.
Необходимое условие сходимости. Теорема: Если ряд сходится, то lim его общего члена равен 0. Док-во: Пусть S=limSn Sn=Sn-1+an, поэтому liman=lim(Sn-Sn-1) или =limSn-limSn-1=S-S=0 Следствие: ( достаточное условие расходимости): Если liman≠0 то - расходится Док-во: (от противного): Пусть - сходится, тогда по теореме liman=0 – противоречие.
Do'stlaringiz bilan baham: |