Alisher navoiy nomidagi samarqand davlat universiteti hisoblash usullari
Gaussning 1-interpolyasion formulasini kursating
Download 5.01 Kb. Pdf ko'rish
|
24. Gaussning 1-interpolyasion formulasini kursating: 251 .... ! 3 ) 1 ( ! 2 ) ( 1 3 ] 3 [ 1 2 ] 2 [ 0 0 y q y q y q y x P .... ! 3 ) 1 ( ! 2 ) ( 1 3 ] 3 [ 1 2 ] 2 [ y q y q x P .... ! 3 ) 1 ( ! 2 ) ( 2 ] 3 [ 1 ] 2 [ 0 0 y q y q qy y x P .... ! 3 ! 2 ) ( 1 3 1 2 0 0 y y y q y x P 25. Kuyidagi tenglamani Nyuton usuli bilan yechish algoritmini kursating: 0 1 2 3 x x 2 3 1 2 2 3 1 n n n n n x x x X X 2 3 1 2 2 1 2 3 1 n n n n x x x X X 2 3 1 2 2 2 3 1 x x x X X n n 2 3 1 2 2 3 1 n n n n n x x x X X 26. Kuyidagi 1 1 1 1 0 0 0 0 ) ( ) ( , ) ( ) ( , ), ( ) ( ) ( b u b u u l a u a u u l b x a x f u x q u x p u Lu ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalada ) ( ), ( ), ( x f x q x p funksiyalar kaysi sinfga taalukli: ] , [ ) 2 ( b a C ] , [ b a C ] , [ b a L ] , [ b a L p 27. Kesmani ikkiga bulish metodining asosiy goyasi nimadan iborat: [a, b] - da uzluksiz ) (x f va ) ( ) ( b f a f < 0 ) (x f [a va b] da uzluksiz ) (x f uzluksiz ) ( ) ( b f a f > 0 28. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalani takribiy usullar bilan (kallokasiya, eng kichik kvadratlar, integral usuli, soxachalar usuli, Galerkin usuli va boshkalar) yechishda ] , . . . , , , [ 2 1 n a a a x tafovut funksiyasining ifodasini keltirib chikaring: n k k k x L a x f x L 1 0 ) ( ) ( ) ( n k k k i x L a x f x L 1 ) ( ) ( ) ( 252 n k k k x a x f x L 1 0 ) ( )) ( ) ( ( n k k k x f x L a x f x L 1 0 ) ( ) ( )) ( ) ( ( 29. Oddiy differensial tenglama uchun kuyilgan chegaraviy masalani UK otish usuli bilan Koshi masalasiga keltirishda UK oitsh burchagi ni aniklash uchun tenglamani keltirib chikaring: 0 ) , 1 ( ) ( 1 y y a F 0 ) , 1 ( ) ( 1 y y a F 0 ) , 1 ( ) ( 1 y y a F 0 ) , 1 ( ) ( 1 y y a F 30. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalalarni kallokasiya usuli bilan yechganda: Berilgan nuktalarda tafovut funksiyasi nolga tenglanadi Tafovut funksiyasining kvadrati minimallashtiriladi Bazis funksiyalar tafovut funksiyasiga ortogonal kilib tanlanadi Berilgan nuktalarda tafovut funksiyasi minimallashtiriladi 31. Xar kanday a musbat sonni chekli yoki cheksiz unli kasr shaklda yozishni kursating: ... 10 ... 10 10 10 1 1 2 2 1 1 n m n m m m m m m m f f f f a ... 10 10 1 1 m m m m f f a ... 10 10 1 m m m m a ... 10 10 1 1 1 m m m m a 32. Yigindining absolyut xatosini topish formulasini kursating: n x x x x U ... 3 2 1 n X U ... 2 1 n x X X U ... 2 1 n X U ... 2 1 n x X X U ... 2 1 33. Ikkita takribiy son ayirmasining limit – absolyut xatosini topish formulasini kursating: 2 1 x x U 2 1 x x U 2 1 x x U 2 1 x x U 34.Kupaytmaning nisbiy xatosini kursating: n x x x U .... 2 1 n n x x x x x x U U ... 2 2 1 1 n x x x U ... 2 1 n x x x U ... 2 1 U U 35. Darajaning nisbiy xatosini kursating: U = x m 253 x u m x n m 1 ux m u n x m u 36. 10 , 1 1 0 n x dx J integralni kiymatini Simpson formulasi yordamida aniklang: J=0,69315 J=0,61416 J=0,52411 J=0,59315 37. Agar funksiyaning kiymati xisoblanishi kerak bulgan nuktadagi kiymati jadvalning oxirida bulsa kaysi interpolyasion formulani ishlatish urinli: Nyutonning 2-chi formulasini Lagranj formulasi Bessel formulasi Gaussning 2- chi formulasi 38. Agar xisoblanayotgan funksiyaning kiymati jadvalning urtasida bulsa, kaysi interpolyasion formulani kullash mumkin: Stirling yoki Bessel Nyutonning 1-chi formulasi Lagranj formulasi Gaussning 1- chi formulasi 39. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalalarni Galyorkin usuli bilan yechganda: Bazis funksiyalar tafovut funksiyasiga ortogonal kilib tanlanadi Berilgan nuktalarda tafovut funksiyasi nolga tenglanadi Bazis funksiyalari minimallashtiriladi Tafovut funksiyasi berilgan nuktalarda minimallashtiriladi. 40. Nisbiy xatoni xisoblash formulasini kursating: A a a A a a A a a A a a 41. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalalarni Kollokasiya usuli bilan yechganda masala kuyidagi masalaga keltiriladi: Chizikli tenglamalar sistemasini yechish Chizikli bulmagan tenglamalar sistemasini yechish Kuyi tartibli oddiy differensial tenglama uchun chegaraviy masalani yechish Oddiy differensial tenglama uchun Koshi masalasini yechish. 42. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalalarni Kollokasiya usuli bilan yechganda masala kuyidagi masalaga keltiriladi: Chizikli tenglamalar sistemasini yechish Chizikli bulmagan tenglamalar sistemasini yechish Kuyi tartibli oddiy differensial tenglama uchun chegaraviy masalani yechish Oddiy differensial tenglama uchun Koshi masalasini yechish. 43. Ildizning m x U nisbiy xatosini topish formulasini kursating: 254 m n x x n x n m m x n 45. 0 8 8 5 ) ( 2 4 x x x x f tenglamaning ildizini Dekart teoremasi orkali musbat ildizlar sonini aniklang: Uchta yoki bitta Turtta Oltita Ikkita 46. 0 8 8 5 ) ( 2 4 x x x x f tenglamaning Lagranj teoremasiga kura, ildizi joylashgan oralikni aniklang: A) (-3,84; 3,84) (3; -1) (0; -1) (-2; 1) 47. 0 ) ( x f tenglamani yechish uchun Vegsteyn metodi algoritmini kursating: n n n n n n n n n n x Z Z x Z x x x x Z 1 1 1 1 1 1 ) )( ( ( n = 1,2, …) n n n n n n n n n n x Z Z x Z x x x x Z 1 1 1 1 1 ) )( ( ( n = 0,1, …) n n n n n n n n n n x Z Z x Z x x x x Z 1 1 1 1 ) )( ( n = 1, 2, … n n n n n n n n n n x Z Z x Z x x x x Z 1 1 1 1 1 2 ) )( ( n = 0, 1, 2, … 48. 0 ) ( x f tenglamani vatarlar metodi bilan yechish algoritmini kursating: ) ( ) ( ) )( ( 1 1 1 n n n n n n n x f x f x x x f x x ( n = 0,1,2, …), ) ( ) ( ) )( ( 1 1 1 1 n n n n n n n x f x f x x x f x x ( n = 1,2,…) ) ( ) ( ) )( ( 1 1 1 n n n n n n n x f x f x x x f x x ( n = 1, 2, …) ) ( ) ( ) )( ( 1 1 1 1 n n n n n n n x f x f x x x f x x ( n = 0,1,2, … ) 49. ) (x f funksiya [a, b] kesmada kaysi shartni kanoatlantirganda vazn funksiyasi deb aytiladi : , 0 ) ( x dx x b a ) ( 0 255 0 ) ( dx x b ab 0 ) ( dx x b ab dx x b ab ) ( 50. Chizikli algebraik tenglamalar sistemasi yechimi uchun progonka usuli necha boskichdan iborat: Ikkita Bitta asosiy va bitta yordamchi Uchta Ikkita asosiy va bitta yordamchi 51. Iterasion metodlarga kaysi metodlar kiradi: Iterasiya metodi, Zeydel metodi, relaksasiya metodi Gauss, Kramer kvadrat ildizlar metodi 2) va 3) javoblar birgalikda 52. Kachon anik integralni takribiy xisoblash formulalarini kullash mumkin: Agar integral ostidagi funksiya elementar funksiyalar sinfidan bulsa. Agar integral ostidagi funksiya murakkab bulsa. Agar integral ostidagi funksiya uzluksiz bulsa. 2) va 3) javoblar birgalikda 53. Algebraik tuldiruvchi deb nimaga aytiladi: ) ( ) 1 ( ij j i ij a M A M j i j ) 1 ( ij ij a M x a M ij ij 54.Kvadratur formula deb nimaga aytiladi: Bir karrali integralni sonli xisoblash formulasiga Ikki karrali integralni sonli xisoblash Uch karrali integralni sonli xisoblash Bir va ikki karrali integralni sonli xisoblash 55. Kubatur formulasi deb nimaga aytiladi: Ikki karrali integralni sonldi xisoblash Bir karrali integralni sonli xisoblash Uch karrali integralni sonli xisoblash Bir va ikki karrali integralni sonli xisoblash 56. Integralni takribiy xisoblashning umumiy kvadratur formulasi kursating: b a n k k n k n x f A dx x f 1 ) ( ) ( ) ( ) ( b a k n k n x f A dx x f ) ( ) ( ) ( ) ( b a k n A x f dx x P x f ) ( ) ( ) ( ) ( |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling