Alisher navoiy nomidagi samarqand davlat universiteti hisoblash usullari
Download 5.01 Kb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- HISOBLASH USULLARI FANIDAN ORALIQ NAZORAT SAVOLLARI
- HISOBLASH USULLARI FANIDAN TESTLAR 1.Chekli ayirmalarni to’g’ri formulasini kursating
- 3. Takribiy differensiallash formulasini i x - nuktalar tablisada berilganda aniklang
- 5. Gaussning 1- interpolyasion formulasini kursating
- 8. Bessel interpolyasion formulasini kursating
- 11. Nyutonning 2-chi interpolyasion formulasini kursating
- 12. Agar 0 ) ( x f tenglamani grafigini chizish kiyin bulsa, u vaktda tenglamani kaysi formada yozish mumkin
- 19. Trapesiya formulasining koldik xadini aniklang: h x x i i ,
- 20. Teskari matrisani topish formulasini kursating
- 21. Kaysi shart bajarilganda Nyutonning 2-chi interpolyasion formulasini kullash kulay
- 23. Krыlov metodi bilan i y larni topish formulasini kursating
ADABIYOTLAR 1. Isroilov M.I. Hisoblash metodlari. Toshkent. O’qituvchi, 1988. 2. Kopchenova N.V., Maron I.A. Vыchisltelnaya matematika v primerax i zadachax. M. Nauka. 1972. 3. Demidovich V.P. Maron I.A. Osnovы vыchislitelnoy matematiki. M.Fiz.mat.literatura. 1960. 4. Vorobyeva G.N. Danilova A.N. Praktikum po vыchislitelnoy matematike. M., Vыsshaya shkola, 1990. 5. Jumanov I.I., Amridinov S.A. Ashurov A.R. Hisoblash matematikasi va optimallashtirish usullari fanidan misol va masalalar yechish. Samarqand, 1995 6. Amridinov S.A. Sonli metodlar fanidan laboratoriya va mustaqil ishlarni bajarishga doir ko’rsatmalar. Samarqand, 1995 245 5 - BO’LIM «HISOBLASH USULLARI» FANIDAN NAZORATLAR ISHLANMASI 246 HISOBLASH USULLARI FANIDAN ORALIQ NAZORAT SAVOLLARI 4. Hisoblash usullari fanining kelib chiqish tarixi. 5. Hisoblash usullari fanining asosiy vazifasi va usuli. 6. Tenglamaning ildizlarini ajratish. Umumiy mulohazalar. 7. Algebraik tenglamalarning haqiqiy ildizlarini ajratish. 8. Ildizlarini ajratish haqida Dikart teoremasi. 9. Ildizlarini ajratish haqida Shturm teoremasi. 10. Ttenglamalarni yechishda oddiy iterasiya metodi. 11. Iterasiya metodi yaqinlashishini tezlashtirishning bir usuli. 12. Hisoblash xatosining iterasion jarayonning yaqinlashishiga ta’siri. 13. Metrik fazo haqida tushuncha. 14. Qisqartirib aks ettirish prinsipi. 15. Chiziqli bo’lmagan tenglamalar sistemasini iterasiya metodi bilan yechish. 16. Bitta sonli tenglama bo’lgan hol Nyuton metodi. 17. Nyuton metodining yaqinlashishi haqidagi teoremalar. 18. Karrali ildizlar uchun nyuton metodi. 19. Modifikasiyalangan Nyuton metodi. 20. Vatarlar metodi. 21. Tenglamalar sistemasi uchun nyuton metodi 22. Algebraik tenglamalar systemasini echishning Gauss metodi. 23. Bosh elementlar metodi. 24. Optimal yo’qotish metodi. 25. Determinatni hisoblash. 26. Matrisalarning teskarisini topish. 27. Kvadrat ildizlar usuli. 28. Kvadrat ildizlar usulining EHMda dastur tuzish. 29. Iterasion jarayonni qurish prinsiplari. 30. Oddiy iterasiya metodi. 31. Zeydel metodi. 32. Eng tez tushish yoki gradiyentlar usulini asosiy g’oyasi. 33. Gradiyentlar usulini yaqinlashishi haqidagi teorema. 34. Matrisalarning xos son va xos vektorlarini topish masalasi. 35. A.N.Krilov metodi. 36. A.N.Krilov metodi yordamida matrisaning xos son va xos vektorlarini topish. 37. Xos sonlarni topishning qismiy muammosida iterasion metodlar. 38. Eng katta xos son va unga mos keladigan xos vektorni topishda darajali metod. 39. Ikkinchi xos son va unga mos keladigan xos vektorni topish. 40. Funksiyalarni interpolyasiyalash masalasi. 41. Logranj interpolyasion formulasi. 42. Sistemaning koeffisiyentlarini hisoblash. 43. Chekli ayirmalar va ularning xossalari. 44. Nyuton interpolyasion formulasining qoldiq hadlari. 45. Gaussning birinchi interpolyasion formulasi. 46. Gaussning ikkinchi interpolyasion formulasi. 47. Bessel interpolyasion formulasi. 48. Sterling interpolyasion formulasi. 49. Markaziy ayirmali jadval. 50. Eng sodda kvadratur formulalar: to’g’ri to’rtburcha, trapesiya formulari. 51. Eng sodda kvadratur formulalar: Simpson formulasi. 52. Eng soda kvadratur formularining qoldiq hadlari. 53. Nyuton-Kotes kvadratur formulasi. 247 HISOBLASH USULLARI FANIDAN TESTLAR 1.Chekli ayirmalarni to’g’ri formulasini kursating: Δ n Y j = Δ n-1 Y j+1 - Δ n-1 Y j Δ n Y j+1 = Δ n-1 Y j - Δ n-1 Y j-1 ΔY j =Y j+1 - Δ 2 Yj Δ n-1 Y j = Δ n Y j - Δ n Y j-1 2. 1 n da Lagranj interpolyasion formulasini aniklang. b a, - berilgan absissa nuktalari: 1 0 y a b a x y b a b x y 0 1 y a b a x y b a b x y 1 0 y a b a x y b a b x y 1 0 y a b a x y b a b x y 3. Takribiy differensiallash formulasini i x - nuktalar tablisada berilganda aniklang: ... 4 3 2 1 ) ( 0 4 0 3 0 2 0 0 ' y y y y h x y ... 5 3 1 ) ( 0 5 0 3 0 0 ' y y y h x y ... 5 4 3 2 ) ( 0 5 0 4 0 3 0 2 0 0 ' y y y y y x y ... 6 4 2 1 ) ( 0 6 0 4 0 2 0 ' y y y h x y 4. Uchta nukta uchun Simpson formulasini kursating: ) ( 2 4 ) ( 6 ) ( b f b a f a f a b dx x f b a 1 2 3 0 2 4 3 ) ( f f f f a b dx x P b a 1 3 0 2 ) ( ) ( f f f a b dx x f b a 1 2 0 4 2 ) ( 3 ) ( ) ( f f f a b dx x P x f b a 5. Gaussning 1- interpolyasion formulasini kursating: P (x) = Y 0 + q ΔY 0 + ! 2 ] 2 [ q Δ 2 Y -1 + ! 3 ) 1 ( ] 3 [ q Δ 3 Y -1 + … P (x) = Y –1 + q ΔY 0 + ! 2 ] 2 [ q Δ 2 Y -1 + ! 3 ) 1 ( ] 3 [ q Δ 3 Y -2 + … P (x) = Y 1 + q ΔY -1 + ! 2 ] 2 [ q Δ 2 Y -1 + … P (x) = Y 0 + q ΔY 1 + ! 2 ] 2 [ q Δ 2 Y 0 + … 6. Chebыshev kvadratur formulasini aniklang: 248 ) ( ) ( i b a x f n a b dx x f n i i b a x f dx x f 1 ) ( ) ( n i b a x f n dx x f 1 ) ( 1 ) ( n i i b a x f n b a dx x f 1 ) ( ) ( 7. Stirling interpolyasion formulasini kursating: P (x) = Y 0 + q 2 0 1 + 2 ] 2 [ q Δ 2 Y -1 + … P (x) = Y 0 + q 2 1 1 + 2 ) 1 ( 2 q ΔY -1 + … P (x) = Y 0 + q 2 1 1 + 2 3 q Δ 2 Y -1 + … P (x) = Y 0 + q 2 1 1 + 2 q Δ 2 Y -1 + … 8. Bessel interpolyasion formulasini kursating: ... 2 2 1 ) 2 1 ( 2 0 2 1 2 0 1 0 q q q x ... 2 1 2 1 0 2 2 1 q q q x ... 2 2 1 2 0 1 0 1 0 q q q x ... 2 2 1 2 0 0 q q x 9. Lagranj interpolyasion kupxadini kursating: j i i j j j n j n x x x x x f x ) ( 0 j i i j j j n j n x x x x x f x ) ( 1 j i i i j j n j n x x x x x f x ) ( 1 j i i j j j n j n x x x x x f x ) ( 1 10. A matrisaning xos kupxadini kursating: n n n n P P P P ... 2 2 1 1 n n P P P P ... 2 2 1 n n P P P P ... 3 3 2 2 1 249 n n P P P P ... 3 3 2 2 1 11. Nyutonning 2-chi interpolyasion formulasini kursating: P n (x) = Y n + q ΔY n-1 + ! 2 ) 1 ( q q Δ 2 2 n y + P n (x) = Y n + (q-1) ΔY n + ! 2 ) 1 ( q q Δ 2 Y n-1 + … P n (x) = Y n-1 + q ΔY n + ! 2 ) 1 ( q q Δ 2 Y n-1 + … P n (x) = Y n + q ΔY n + ! 2 ) 1 ( q q Δ Y n-1 + … 12. Agar 0 ) ( x f tenglamani grafigini chizish kiyin bulsa, u vaktda tenglamani kaysi formada yozish mumkin : 0 1 2 ) 1 2 ( ) ( x x x f x x 2 1 2 1 2 2 2 x x x x x x 2 1 2 x x 2 1 1 2 13. Interpolyasiyalash jarayonining kaysi xolatida rasional funksiyalar sinfi olinadi: Funksiya berilgan nuktalarda cheksizga aylanadigan bulsa. Chizikli funksiyalar bulsa Chizikli bulmagan funksiyalar bulsa Davriy funksiyalar bulsa 14. 1 1 n M matrisa kaysi kurinishga ega: 0 0 0 1 0 0 ... 0 0 0 ... ... 0 1 0 ... 0 0 1 1 , 3 2 1 1 nn n n n n n n a a a a a M 1 0 0 0 ... 0 0 0 ... 0 0 1 ... 2 1 1 1 n n P P P M 1 1 1 A M n nn n n n n n a a a a a a a a a M .... ... ... 2 2 22 1 12 1 21 11 1 1 15. Interpolyasiyalash algebraik deyiladi, agar … Darajali kupxadlar olinsa Algebraik funksiya olinsa Transendent funksiya olinsa Rasional funksiya olinsa 16. Agar davriy funksiya bulsa, {R(x)} sinfi sifatida kaysi funksiyalar sinfi olinadi: Trigonometrik funksiyalar Chizikli funksiyalar Davriy bulmagan funksiyalar olinsa 250 Chizikli bulmagan funksiyalar 19. Trapesiya formulasining koldik xadini aniklang: h x x i i , R= ) ( 12 3 y h R= ) ( 12 4 y h R= ) ( 6 2 y h R= ) ( 12 3 y h 20. Teskari matrisani topish formulasini kursating: nn n n n n A A A A A A A A A A ,... ,... ,... 1 2 1 2 22 21 1 12 11 1 nn n n n A A A A A A A ,... ,... 2 1 1 21 11 1 * 1 A A E A 1 21. Kaysi shart bajarilganda Nyutonning 2-chi interpolyasion formulasini kullash kulay: Agar 0 x x va x 1 x ga yakin bulsa Agar 0 x x bulsa va x 0 x ga yakin Agar 0 x x bulsa va x 0 x ga yakin buladi Agar 0 x x bulsa va x n x ga yakin buladi 22. Zeydel metodining yakinlashish shartini kursating: 1 max 1 max 1 1 n i ii ij j n j ii ij i a a a a 1 ) (k i i x x ) ( ) ( max 1 max k i k i i x x x 1 , 1 1 1 n i ij n j ij 23. Krыlov metodi bilan i y larni topish formulasini kursating: n j n j ij n i y a y 1 ) 1 ( ) ( n j ij n i a y 1 ) ( n i n j n i y y 1 ) 1 ( ) ( i ij n i y a y ) ( Download 5.01 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling