kurinishdan keltirib chikarishdan A, V chizikli operatorlarni V
1
, V
2
lardan boglik xolda
aniklang: (Bu yerda
i
n
i
i
i
y
y
y
y
,
.
.
.
,
,
1
0
).
2
1
2
1
4
,
2
2
B
B
B
B
B
A
2
1
2
1
,
2
B
B
B
B
B
A
2
1
2
1
2
,
B
B
B
B
B
A
2
1
2
1
,
B
B
B
B
B
A
84. Berilgan sistema uchun iterasiya metodini kullash uchun kulay formasini kursating:
n
n
n
n
n
n
n
n
n
n
n
x
x
x
x
x
x
x
x
x
x
x
x
1
1
,
2
2
1
1
2
2
3
23
1
21
2
1
1
3
13
2
12
1
...
...
...
)
(
)
1
(
k
k
x
x
b
x
A
261
x
A
x
85. Chizikli tenglamalar sistemasini yechishning iterasiya metodining vektorli
kurinishini kursating:
x
x
)
(
)
1
(
k
k
x
x
b
x
A
A
x
x
k
n
n
k
n
)
(
)
1
(
86. Issiklik utkazuvchanlik tenglamasi uchun
1
0
,
1
0
),
)
1
(
(
1
1
J
j
n
i
y
y
y
y
j
i
j
i
j
i
j
i
ikki katlamli ayirmali sxemani
0
1
1
j
i
j
i
j
i
Ay
y
y
B
kanonik kurinishga keltirishda A, V
operatorlarni aniklang:
E
B
A
,
A
E
B
E
A
2
,
2
E
B
A
,
A
E
B
A
,
87. Tulkin tenglamasi
)
,
(
2
2
2
2
t
x
f
x
u
t
u
uchun bir parametrli ayirmali sxema
y
y
y
y
t
t
)
2
1
(
€
oshkor deyiladi, agar …
0
1
5
,
0
1
88. Tulkin tenglamasi umumiy chegaraviy masalasi uchun mos
),
(
~
)
0
,
(
),
(
)
0
,
(
),
(
),
(
)
2
1
(
€
0
0
2
1
0
x
u
x
y
x
u
x
y
t
y
t
y
y
y
y
y
t
n
t
t
AS da
)
(
~
)
0
,
(
0
x
u
x
y
t
shart, dastlabki
)
(
)
0
,
(
0
x
u
t
x
u
differensial masala shartini
approksimasiyaladi.
Approksimasiya
anikligi
)
(
2
O
kilib
kullansa
)
(
~
0
x
u
ni
)
,
(
),
(
),
(
0
0
t
x
f
x
u
x
u
Lar orkali aniklang:
))
0
,
(
)
(
(
5
,
0
)
(
)
(
~
0
0
0
x
f
x
u
x
u
x
u
)
0
,
(
)
(
)
(
)
(
~
0
0
0
x
f
x
u
x
u
x
u
))
0
,
(
)
(
(
5
,
0
)
(
)
(
~
0
0
0
x
f
x
u
x
u
x
u
)
(
)
(
)
(
~
0
0
0
x
u
x
u
x
u
89. Umumlashgan daraja formulasini kursating:
x
[n]
= x (x-h) (x-2h) … [x-(n-1)h]
x
[n-1]
= x (x-h) (x-2h) … [x-(n-1)h]
x
[n+1]
= x (x-h) (x-2h) … [x-(n-1)h]
x
[n]
= x (x-h) (x-3h) … [x-(n+1)h]
262
90. Agar xisoblanayotgan funksiyaning kiymati jadvalning boshida bulsa kaysi
interpolyasion formulani kullash urinli:
Nyutonning 1-chi formulasini
Lagranj formulasini
Nyutonning 2- chi formulasini
Gaussning 1-chi formulasini
91. Bir ulchovli tulkin tenglamasi umumiy chegaraviy masalasi uchun mos
2
1
2
2
1
1
2
1
1
1
0
1
2
1
1
1
1
2
)
2
1
(
2
,
,
1
,
1
,
1
,
1
,
,
,
2
1
j
j
j
i
j
i
j
n
j
i
j
i
j
i
j
i
y
y
y
y
F
h
J
j
n
i
y
y
F
y
y
y
Ayirmali tenglamani yechish uchun progonka usuli tugunligining yetarlilik sharti
kuyidagilardan kaysi biri xisoblanadi:
0
1
5
,
0
0
,
1
92. Iterasiya metodi yakinlashuvchi bulishi uchun berilgan sistema A matrisaning
diagonal elementlari kaysi shartni kanoatlantirishi kerak:
j
i
ij
ii
a
a
j
ij
ii
a
a
j
ij
ii
ii
a
a
a
j
ij
ii
ii
a
a
a
93. Umumiy uch katlamli
h
n
n
N
n
n
n
n
n
n
n
H
y
y
y
y
y
y
y
K
n
y
B
y
B
y
B
...,
,
,
,
,
.
.
.
,
,
,
1
,
1
,
1
0
1
0
1
0
1
1
2
ayirmali tenglamani
Ay
Ry
y
B
t
t
t
2
2
0
kanonik kurinishga keltiring. B, R, A, operatorlarni
2
1
0
,
,
B
B
B
Lar orkali aniklang:
1
0
2
0
2
0
2
),
(
2
1
),
(
B
B
B
A
B
B
R
B
B
B
)
(
,
),
(
1
0
0
2
1
0
2
B
B
A
B
B
R
B
B
B
B
1
0
2
0
1
0
1
),
(
2
),
(
2
B
B
B
A
B
B
R
B
B
B
)
(
2
1
),
(
2
1
,
1
0
2
0
2
0
2
B
B
B
A
B
B
R
B
B
B
94. Milnning birinchi formulasini kursating:
'
'
1
'
2
3
2
2
3
4
i
i
i
i
i
y
y
y
h
y
y
'
1
'
2
'
3
4
2
2
3
4
i
i
i
i
i
y
y
y
h
y
y
263
'
1
'
2
'
3
4
2
2
3
i
i
i
i
i
y
y
y
h
y
y
'
1
'
2
'
3
2
2
3
4
4
i
i
i
i
y
y
y
h
i
y
95. Ikki noma’lumli tenglamalar sistemasi uchun Nyuton metodi formulasini kursating:
)
,
(
,
,
)
,
(
)
,
(
1
1
1
1
n
n
y
n
n
n
n
y
n
n
n
n
n
n
Y
X
G
Y
X
G
F
X
F
X
X
X
)
,
(
,
,
)
,
(
)
,
(
1
1
1
1
n
n
n
n
x
n
n
n
n
x
n
n
n
n
Y
X
G
Y
X
G
F
X
F
X
X
X
;
)
,
(
1
1
n
n
n
n
Y
x
X
X
)
,
(
1
n
n
n
n
Y
X
Y
Y
Y
n
n
Y
X
1
1
1
Y
X
X
n
n
96. Kuyidagi
2
1
2
1
1
1
1
1
0
1
,...,
2
,
1
,
n
n
i
i
i
i
i
i
i
y
y
n
i
y
y
y
y
y
chizikli tenglamalar sistemasini
n
i
y
i
,
0
,
ga nisbatan yechishda progonka usulining yetarli
yakinlashish shartini kursating:
2
,
2
,
1
,
1
,
1
,
1
,
2
1
i
n
i
i
i
i
i
1
,
2
,
1
,
0
,
1
,
1
,
2
1
i
n
i
i
i
i
,
2
,
1
,
1
,
1
,
1
,
i
n
i
i
i
i
i
2
1
,
2
,
1
,
1
,
1
,
1
,
2
1
i
n
i
i
i
i
i
97. Birinchi Nyuton interpolyasion formulasini kursating:
....
)
(
!
2
)
(
!
1
)
(
]
2
[
0
2
0
2
]
1
[
0
0
0
x
x
h
y
x
x
h
y
y
x
P
n
....
)
(
!
2
)
(
!
1
)
(
]
3
[
0
2
0
2
]
1
[
0
0
x
x
h
y
x
x
h
y
x
P
n
....
)
(
!
2
)
(
!
1
)
(
]
2
[
0
3
0
2
]
1
[
0
0
1
x
x
h
y
x
x
h
y
y
x
P
n
....
)
(
!
2
)
(
!
1
)
(
]
2
[
0
3
0
]
1
[
0
0
0
x
x
h
y
x
x
h
y
y
x
P
n
98. Milnning ikkinchi formulasini kursating:
'
'
1
'
2
2
4
2
i
i
i
i
i
y
y
y
h
y
y
'
'
1
'
2
2
4
2
i
i
i
i
i
y
y
y
h
y
y
'
'
1
'
2
2
4
3
i
i
i
i
i
y
y
y
h
y
y
264
i
i
i
i
y
y
y
h
y
y
i
1
2
'
4
3
2
99. Kushma matrisa deb nimaga aytiladi:
ji
ij
a
a
*
E
AA
*
1
*
A
A
A
A
1
100. Unitar matrisa deb nimaga aytiladi:
E
AA
*
1
*
A
A
1
T
A
ji
ij
a
a
*
265
HISOBLASH USULLARI FANIDAN
YAKUNIY NAZORAT VARIANTLARI
Do'stlaringiz bilan baham: |