Деятельности


Download 2.84 Kb.
Pdf ko'rish
bet13/97
Sana19.06.2023
Hajmi2.84 Kb.
#1614259
TuriМонография
1   ...   9   10   11   12   13   14   15   16   ...   97
Bog'liq
OTRD

 (x, и), являющейся функ-
цией переменных х и и. Если обозначить x
k
—состояние системы
на k-м шаге, то при условии, что начальное состояние есть х
0
и конечная цель достигается на п-м шаге, весь процесс можно
описать последовательностью {х
0
, х
1
, . . . , х
п
}, в которой каждое
состояние х
к
(кроме начального х
0
) определяется предыдущим
состоянием x
k-1
и принятым на k-м шаге решением. Разные реше-
ния приводят к разным состояниям, другими словами, к разным
процессам: {х} = {х
0
, х
1
. . .„ х). С каждым процессом {х} естест-
венно связать величину F{x}, характеризующую те выгоды (или
потери), которые дает выбор данного процесса F{x}... Будем ин-
терпретировать величину F{x} как потери и называть функцией
потерь ... Если {x'} и {х"}— два разных процесса, то, естественно,
нужно отдать предпочтение тому процессу, с которым связаны
меньшие потери, т. е. меньшее значение функции F... Процесс
{x
0
}, для которого функция потерь принимает наименьшее зна-
чение: F{x
0
} = min, называется оптимальным».
Описанный случай является простейшим (детерминированным).
Чаще всего наше решение u
k
меняет не непосредственно состояние
системы, но лишь «вероятности, с которыми на k-м шаге соверша-
ется переход из состояния x
k-1
в одно из возможных состояний х
к
.
Это обусловливается тем обстоятельством, что состояние системы
зависит не только от наших воздействий на нее, но и от множества
других факторов, не поддающихся нашему анализу» [Розанов,
1965, 136]. В этом случае оптимальность процесса соответствует
наименьшему среднему значению функции потерь.
Реальные физические процессы, изучаемые теорией оптималь-
ных процессов, чаще всего не дискретны, а непрерывны, и реше-
ние их объединяется так называемым принципом максимума
[Понтрягин и др., 1969, 11 и др.]. Очень важно, что теория
описывает процессы с разным характером оптимальности — когда
задана минимальная (в пространстве) траектория, или задана ми-
нимальность времени перехода из положения х
о
в положение

Download 2.84 Kb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   ...   97




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling