O‛zb е kiston r е spublikasi oliy va o‛rta maxsus ta’lim vazirligi
Download 1.23 Mb.
|
Olimpiada- 2011
- Bu sahifa navigatsiya:
- Javob
Y echim: ABC uchburchak teng yonli bo’lgani uchun A= C=α deb olish mumkin.
AEC: sinα=AE:AC, ABF: sinα=BF:AB => =>AE:AC =BF:AB=> =>AC:AB=AE:BF=1:2=> =>cosA=AF:AB=(AC/2):AB= =(AC:AB)/2=(1:2)/2=1/4 Javob: C) 29) Trapetsiyaning kichik asosi va ikkala yon tomonlari 5 ga teng va burchaklaridan biri 600 ga teng. Trapetsiyaga tashqi chizilgan aylana radiusini toping. A) 8 B) 7 C) 6 D) 5 Yechim: Dastlab bu masalaning standart yechimini keltiramiz. Oldin ABE to’gri burchakli uchburchakdan trapetsiyaning BE balandligini va AE kesmani topamiz (chizmaga qarang): BE=AB∙sin600=5∙ /2 , AE=AB∙cos600=5/2 . Bu holda AD=BC+2AE=5+2∙5/2=10, AK=KD=AD/2=5, NC=BN=BC/2=5/2 bo’ladi. Agar OC=OD=R, ON=x desak, OK=NK−ON=BE−x=5 /2−x. CON va DOK to’g’ri burchakli uchburchaklardan quyidagilarni topamiz: R2=OC2=ON2+NC2=x2+(5/2)2 , R2=OD2=OK2+KD2=(5 /2−x)2+52 => => (5 /2−x)2+52 =x2+(5/2)2 => => x=15/2 =5 /2 => => R2= x2+(5/2)2=75/4+25/4=25 => => R=5=KD=AK. Demak, tashqi chizilgan aylana markazi trapetsiyaning katta asosi o’rtasida joylashgan va uning radiusi 5 ga teng. Endi bu masalaning original, olimpiadacha yechimini ko’rsatamiz. Buning uchun ABCD trapetsiyani AD katta asosiga nisbatan simmetrik tarzda akslantiramiz. Natijada tomoni a=5 bo’lgan ABCDC1D1 muntazam oltiburchakka ega bo’lamiz. Bu oltiburchakka tashqi chizilgan aylana ABCD trapetsiya uchun ham tashqi chizilgan aylana bo’ladi va uning radiusi R=a=5 . Javob: D) 30) To’g’ri burchakli uchburchakning katetlari 3 va 4 bo’lsa, unga ichki chizilgan aylana radiusini toping. A) 1 B) 2 C) 1.5 D) 1.2 Yechim: Katetlar a=3, b=4 bo’lgani uchun gipotenuza c=5. To’g’ri burchakli uchburchakka ichki chizilgan aylana radiusi uchun r=(a+b−c)/2 formuladan r=1 ekanligi kelib chiqadi. Javob: A) Izoh: II bosqich uchun keyingi testlar mumkin bo’gan javoblari ko’rsatilmagan holda berilgan. 31) Muntazam (teng tomonli ) uchburchakning bissektrisasi 12 bo’lsa, unga ichki chizilgan aylana radiusini toping. Javob: …. Yechim: Dastlab bu masalaning standart yechimini keltiramiz. ABC muntazam uchburchakda A= B= C=600 bo’lib, AB=AC=BC=a deb belgilaymiz va uni topamiz. Bissektrisa BE=12 bir paytning o’zida balandlik ham bo’ladi va shu sababli ABE to’g’ri burchakli uchburchak bo’lib, undan a=AB=BE/sin600=12∙2/ =8 ekanligini topamiz. Bu holda SABC=a2sin600/2=82∙3∙ /4=48 . Ikkinchi tomondan ichki chizilgan aylana radiusi OK=ON=OE=r desak, unda yarimperimetr p=3a/2=12 bo’lgani uchun SABC=pr formuladan 48 =12 r => r=4 javobni olamiz. Endi bu masalaning nostandart, olimpiadaga xos yechimini keltiramiz. Uchburchakka ichki chizilgan aylana markazi O uning bissektrisalari kesishgan nuqtada bo’ladi. Muntazam uchburchakning bissektrisalari uning medianalari bilan ustma-ust tushadi va shu sababli O medianalar kesishga nuqta bo’ladi. Mediana xossasiga asosan O nuqtada ular burchak uchidan qaraganda 2:1 nisbatda bo’linadi. Demak, izlangan radius r=BO=BE/3=12/3=4 bo’ladi. Javob: r=4 . 32) Agar bo’lsa, soni natural son bo’ladigan barcha natural n larni toping. Javob: ……. Yechim: Bu test yechimining ikki usulini ko’rsatamiz. I usul. Oxirgi tenglikning chap tomoni 5 ga bo’linadi va shu sababli m=5k±1 bo’lishi kerak.Bu holda 35(1632+n)=5k(5k±2)=>7(1632+n)=k(5k±2). Bu tenglikning chap tomoni 7 ga bo’linadi va shu sababli k=7t yoki 5k±2=7t bo’lishi kerak. I hol. k=7t => 1632+n=t(35t±2)=35t2±2t . Bunda, test shartiga asosan , 1000≤n≤2000 bo’lgani uchun 2632≤35t2±2t≤3632 ekanligi kelib chiqadi. Bu yerdan ushbu tengsizliklar sistemasiga kelamiz: . 1) 35t2±2t−3632≤0 => D=1+35∙3632=127121 => . 2) 35t2±2t−2632≥0 => D=1+35∙2632=92121 => Demak, 8.6… ≤ t ≤ 10.4…, , => t=9 yoki t=10 . A) t=9 =>1632+n=35∙92±2∙9=2835±18 => n=1203±18 => n1=1221, n2=1185 . Bunda B) t=10 =>1632+n=35∙102±2∙10=3500±20 => n=1868±20 => n3=1848, n4=1888 . Bunda II hol. 5k=7t±2 Bunda, test shartiga asosan 1000≤n≤2000 bo’lgani uchun 1000≤35q2±12q−1631≤2000 ekanligi kelib chiqadi. Bu yerdan ushbu tengsizliklar sistemasiga kelamiz: . 1) 35q2±12q−3631≤0 => D=36+35∙3631=127121 => . 2) 35q2±12q−2631≥0 => D=36+35∙2631=92121 => Demak, 8, … ≤ q ≤ 10, …, , => q=9 yoki q=10 . A) q=9 =>n=35∙92±12∙9−1631=1204±108 => n1=1312, n2=1096 . Bunda B) q=10 =>n=35∙102±12∙10−1631=1869±120 => n3=1989, n4=1749 . Bunda II usul. Bu usul BDU dotsenti Z. Hamdamov tomonidan taklif etilgan va unda 57121=2392 ekanligidan foydalaniladi. . . Oxirgi kasr qiymati natural son bo’ladigan hollarni qarab chiqamiz. Download 1.23 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling