S. o r I f j o n o V elektromagnitizm
r2 = ja , r3 = ia + j a Bu vektorlar- 3.3-rasm
Download 48 Kb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- P o te n sia l t a ’rifi.
- E k vip oten sial sirtlar va m ayd on k u ch lan gan ligi.
- M ayd on nin g potensiallik shartlari.
- P o te n sia ln i m ayd on k u ch lan gan ligiga k o ‘ra to p ish .
- P o te n sia ln i za ry a d la r taq sim otiga binoan h iso b la sh .
- P o t e n s ia l u ch un P u a s s o n te n g la m a si.
- P o te n sia l va en ergiyan in g saq lan ish qonuni.
- 5 - § . D ip o ln in g e le k t r m a y d o n i 5 .1-rasm.
r2 = ja , r3 = ia + j a Bu vektorlar- 3.3-rasm. ning modullari mos ravishda а, а, -Д а gatengdir. M aydon kuchlanganligini (3.15) formula b o ‘yicha hisoblaymiz: Boshqa zaryadlarga ta ’sir etuvchi kuchlarning m oduli ham huddi shunday b o 'la d i, y o 'n a lish lari esa farq qiladi. 3.5. Tekis zary ad lan g an sferik sirt ich id a e le k tr m ay d o n nolga tengligi isbotlansin. Yechim. Sferadagi zaryadlarning sirt zichligi a b o ‘lsin. sfera ichidagi ixtiyoriy О nuqtadagi m aydon kuchlanganligini o'rganaylik. Sfera sirtida d S t yuzacha olaylik, undagi zary ad dq{ = a d S { ga teng . Y uzachaning chetki nuqtalarini О nuqta bilan to ‘g ‘ri chiziqlar vositasda birlashtiram iz va sfera bilan k esish g u n ch a davom e ttira m iz (3 .3 -rasm ). S fera sirtida ikkinchi dS2 yuzacha hosil qilam iz, u ndagi zary ad dq2 = a dS 2 ga teng. Ikki yuza va zaryadlarning miqdori О nuqtagacha b o ‘lgan r, va r2 m aso- falarning kvadratlariga m u tan o sib b o 'la d i, u la r О n u q tad a hosil qilgan m aydon kuchlanganligi m asofaning kvadratiga teskari m utanosib b o ia d i. N atijada ikki zaryad О nuqtada son jih a td a n teng , yo'nalishi teskari kuchlanganlik hosil qiladi, natijadagi m aydon nolga teng b o iad i. 3.6. Yassi sirtdagi zaryadlarning sirt zichligi a = const b o ‘lsin. Bu sirtni biron nuqtada hosil qilgan m aydon kuchlanganligining sirtga tik tashkil etuvchisini hisoblang. Yechim. Zaryadlangan sirtda kichik ^ 5 b o ‘lak tanlaylik, undagi zaryad a d S ni nuqtaviy zaryad sifatida qarash mumkin. Bu zaryadning A nuqtadagi (3.4-rasm) m aydon kuchlanganligi dE = ka d S //2. Bu m aydonning sirtga tik tashkil ctuvchisi bu yerda dD. — kuzatuv/l nuqtasidan d S yuzaning ko‘rinish fazoviy burchagi. B utun sirt hosil qilgan m aydoni: Е ± = к а П . (3.20) dE± = d E cos 9 = k o { d S cos 9) / r 2 = k a d S о / r 2 = ka d Q . Bu yerda Q kuzatuv n uqtasidan zaryadlangan sirtning ko‘rinish fazoviy burchagi. 3.4-rasm. 3.7. cr zichlik bilan tekis zaryadlangan cheksiz tekislikning m aydon kuchlanganligini toping. Yechim. C heksiz tekislikni qaysi n u q ta d a n kuzatm aylik, u yarim fazoni bekitib turadi, uning fazoviy burchagi t o ‘liq fazoviy burchakning yarm ini tashkil etadi: £1 = Ал / 2 , dem ak: E± = Inker = (J / 2e0 . (3.21) B u m a sa la d a b u tu n m ay d o n za ry ad li sirtg a tik b o 'la d i, m a y d o n n in g b o s h q a ta sh k il e tu v c h is i b o 'lm a y d i. Z a r y a d li s irtn in g ikki ta ra fid a m aydon kuchlanganligi sirtga tik tashqariga y o 'n alg an bo'ladi. Z aryadlar m a n fiy b o 'ls a (cr < 0 ) , m a y d o n s irtg a to m o n y o 'n a lg a n b o 'la d i. T o p ilg a n m ay d o n b u tu n yarim fa z o d a m o d u l va y o ‘n alish b o 'y ic h a d o im iy b o ‘lib, b ir jin s li m a y d o n d eb a ta la d i. 3.8. K ubning t o ‘rt yon sirti о zichlik bilan, ikki q o ‘shni yon sirti ct zichlik bilan z a ry a d la n g a n . K u b n in g m a rk a z id a g i m ay d o n k u c h la n g a n lig in i to p in g . Javob: E = \f2cr/ Згд. K u c h la n g a n lik e le k tr m a y d o n d a g i k u c h la rn i o 'r g a n is h u c h u n h iz m a t q ilad i. U sh b u b o ‘lim d a e le k tr m a y d o n d a g i ish va e n e ig iy a n i o ‘rg a n ish v o sitasi b o ‘lg an e le k tr m a y d o n p o te n s ia li k iritila d i. P o te n sia l t a ’rifi. Z a r y a d e le k tro sta tik m a y d o n d a h a r a k a tla - n a y o tg a n id a e le k tr m a y d o n b a ja r g a n e le m e n ta r ish q u y id a g ic h a ifodalanadi: dA = qEdJ, (4 .1 ) B u y e rd a e le m e n ta r siljish: d l = idx + jd y + kdz, (4 .2 ) E d i = E x dx + E yd y + E z dz. (4 .3 ) E le k tr m a y d o n p o te n s ia lin i (ф ) q u y id a g i te n g lik b ila n t a ’rif- laym iz: M = -d (4 .4 ) -d (4 5) dy dz ) y } (4 .3 ) va (4 .5 ) ifo d a la rn i te n g la b , q u y id a g ila rn i to p a m iz : г _ д (Р ғ _ д<Р ғ _ d (P ~ > b y - 5 ElZ ~ o ’ d x ' d y dz Ё = -g r a d (4 .6 ) S h u n d a y q ilib , m a y d o n k u c h la n g a n lig ig a q a ra b m a y d o n p o te n s ia li (4 .4 ) te n g lik b ila n to p ila d i, p o te n s ia lg a k o ‘ra k u c h la n g a n lik (4 .6 ) te n g lik b ila n to p ila d i. C h e k li siljish u c h u n : 2 j E d l = -[i p( r 2) - c p ( r l )] = -Acp ( 4 . 7 ) l cp fu n k siy a is h tir o k id a z a ry a d n i siljitish b o ‘y ic h a e le k tr m a y d o n b a ja rg a n ish e le m e n ta r h is o b la n a d i: A = -qAcp. (4 .8 ) (p fu n k siy a e le k tr m a y d o n p o te n s ia li, Acp esa p o te n s ia lla r fa rq i d e b a ta la d i. P o te n s ia l — m a y d o n k u c h la n g a n lig i k a b i e le k tr m a y d o n in in g m u h im h a ra k te ristik a si h iso b la n a d i. Z a ry a d (m u s b a t z a ry a d ) m a y d o n k u c h la n g a n lig i b o ‘y lab siljisa, m a y d o n n in g ishi m u s b a t b o 'la d i. B u n i (4 .1 ) if o d a d a n k o ‘rish m u m k in . (4 .4 ) g a k o 'r a m u s b a t ish p o te n s ia l k a m a y a d ig a n y o ‘n a lish d a g i siljish b ila n b o g ‘liq lig in i k o ‘ris h m u m k in . P o te n s ia l u c h u n (4 .6 ) ifo d a g a k o ‘ra p o te n s ia lg a d o im iy s o n q o 's h ils a ( k o o r d in a ta la r g a b o g £liq b o ‘lm a g a n m iq d o r) — m a y d o n k u c h la n g a n lig i o ‘z g a rm a y d i. K o ‘p h o lla rd a b u d o im iy n i n o l d e b olsa h a m b o ‘ladi. (4 .8 ) te n g lik d a n p o te n s ia lla r fa rq in in g q u y id a g i t a ’rifi k elib c h iq a d i: ikki n u q ta o ra s id a g i p o te n s ia lla r fa rq i d e b b irlik z a ry a d b ir n u q ta d a n ik k in c h i n u q ta g a s iljig a n d a e le k tr k u c h la r g a q a rs h i bajarilgan ishga ay tilad i. M a ’lu m k i, g r a d cp h o s ila v e k to r m iq d o r b o 'lib , u n in g y o ‘n a - lish i (p s k a ly a r f u n k s iy a n in g q iy m a ti qaysi y o ‘n a lis h d a e n g te z k a m a y a d ig a n t o m o n n i k o ‘rsa ta d i. E le k tr m a y d o n z a ry a d n i (m u s b a t z a ry a d n i) k ic h ik p o te n s ia lli ta ra fg a , z a ry a d p o te n sia li k a m a y a d ig a n ta ra fg a ita r a r e k a n . P o te n s ia l m a y d o n n in g b u n d a y x o ssa si m e x a - n ik ad a h a m t a ’k id la n a d i. P o te n s i a l t u s h u n c h a s i m e x a n ik a d a g i p o t e n s i a l e n e r g iy a tu s h u n c h a s i b ila n b e v o sita b o g ‘liq: H/ = < 7 <}?ko‘p a y tm a z a ry a d n in g e le k tr m a y d o n id a g i p o te n s ia l e n e rg iy a sin i b ild irad i. Z a r y a d g a t a ’sir e tu v c h i k u c h u n in g p o te n s ia l e n e rg iy a s in i k a m a y tiris h g a in tila d i. P o te n s ia l A = — q& te n g lik k a m u v o fiq \< p \= J /C = V (v o lt) b irlig id a o 'l c h a n a d i . E d i - - d t p te n g lik k a m o s ra v is h d a m a y d o n k u c h la n g a n lig in in g birlig i [E \= V /m g a ten g . E k vip oten sial sirtlar va m ayd on k u ch lan gan ligi. P o te n s ia lla ri te n g n u q t a l a r t o ‘p l a m i e k v ip o te n s ia l s irt d e b a t a l a d i. Z a r y a d ekvipotensial sirt b o ‘y lab siljiganda dcp = 0 b o ‘ladi va ish b ajarilm ay d i. (4 .4 ) g a k o ‘ra , dip = - E d i = 0 b o i i s h i u c h u n siljish m a y d o n k u c h - la n g a n lig ig a tik b o 'l i s h i k e ra k : d l 1 Ё , m a y d o n k u c h la n g a n lig i h a m m a v a q t e k v ip o te n s ia l s ir tla r g a tik b o 'l a d i . E l e k tr o s ta tik m a y d o n d a g i o ‘t k a z g ic h la r h a jm id a g i z a ry a d la r n i t i n c h tu r is h i u la r n in g ic h id a e le k tr m a y d o n n o lg a te n g lig id a n d a r a k b e r a d i. M a y d o n n o lg a te n g b o ‘lsa, (4 .4 ) g a k o ‘ra d 0, o ‘tk a z g ic h n in g b u tu n h ajm i v a sirti ek v ip o ten sial b o ‘ladi. J u m la d a n o ‘tk a z g ic h n in g ic h id a g i te s h ik la rd a h a m p o te n s ia l d o im iy b o ‘lad i. 0 ‘tk a z g ic h s irtid a g i e le k tr m a y d o n sirtg a tik b o ‘ladi. M ayd on nin g potensiallik shartlari. M a y d o n p o ten siali kiritilish i u c h u n m a y d o n m a ’lu m x o ssa la rg a eg a boM ishi lo z im . M a y d o n p o te n s ia llig in in g b ir n e c h a ek v iv ale n t t a ’riflari m a v ju d . • M a y d o n p o te n s ia l boM ishi u c h u n E d i b ir o n s k a ly a r fu n k siy a n in g toMiq d iffe ren siali boM ishi lo z im ( 4 .4 - fo rm u la g a q a ra n g ). • Y o k i e le k tr m a y d o n d a b ajarilg a n ish (4. 7) fo rm u la g a m u v o fiq yoM s h a k lig a bogM iq boM m ay, fa q a t b o sh la n g M c h v a o x irg i n u q ta - la m in g k o o rd in a ta la rig a bogMiq boMishi lo z im . • Y o p iq yoM b o 'y ic h a b a ja rilg a n d a (4 .7 ) f o r m u la g a m u v o fiq ish n o l boM ishi k erak : ф E d i = 0. (4 .9 ) / B u in teg ra l m a y d o n u y u rm a sin i, sirk u ly atsiy asin i b ild ira d i. D e m a k , m a y d o n p o te n sia l boMishi u c h u n u n d a a y la n ish la r boM m asligi kerak. (S h u n i ay tib o 'ta y lik k i, yo p iq ch iziq b o ‘y ic h a in tegral h is o b la n g a n d a v e k to r y o k i s k a ly a r p o te n s ia lg a eg a boM gan h a r q a n d a y fu n k s iy a in teg ra li n o lg a te n g boM adi.) M a y d o n n in g y a n a b ir p o te n sia llik belg isin i to p is h u c h u n S to k s te o re m a si (ilo v ag a q a ra n g ) y o rd a m id a (4.9) in teg ra ln i y o p iq / c h iz iq b ila n c h e g a ra la n g a n i 's i r t b o 'y ic h a in te g ra lg a a lm a s h tira m iz : j> E d i = j rotE dS =0. (4 -Ю ) / 5 Bu y e r d a d S — S s irtn in g k ic h ik e le m e n ti, d S v e k to r s irtg a tik jo y la s h ib , sirtn i fa z o d a q a n d a y jo y la s h g a n in i a n iq la b b e ra d i. • In te g ra ln in g n o lg a tengligi in te g ra lla n a y o tg a n fu n k siy a n o lg a te n g lig id a n d a r a k b e ra d i: т г Ё = 0. (4 .1 1 ) Bu fa z o v iy h o s ila v e k to m in g u y u rm a s i d e b a ta la d i. (4 .9 ) v a (4 .1 1 ) te n g lik la r e le k tro sta tik m a y d o n d a a y la n is h la r, u y u rm a la r y o ‘q lig i- d a n d a ra k b e ra d i. 0 ‘z g a r u v c h a n m a g n it m a y d o n F a r a d e y n in g e le k tr o m a g n it in d u k s iy a q o n u n ig a a s o s a n u y u rm a v iy e le k tr m a y d o n n i v u ju d g a k e ltira d i — b u q o n u n b ila n o ‘q u v c h i 3 -b o b d a ta n is h a d i. S h u n d a y q ilib m a y d o n p o te n s ia l x a r a k te rd a boM ishi u c h u n , u n d a u y u rm a la r boM m asligi kerak . J u m la d a n , q o 'z g 'a lm a s n u q ta v iy z a r y a d la r n in g p o te n s ia li m a v ju d lig i ( q u y id a q a r a n g ) u la r n i n g m a y d o n id a u y u r m a l a r y o ‘q lig id a n d a r a k b e r a d i. E le k tr o s ta tik m a y d o n la r h a m m a v a q t p o te n s ia llik s h a r tin i q a n o a tla n tir a d i. P o te n sia ln i m ayd on k u ch lan gan ligiga k o ‘ra to p ish . B iijin sli e le k tr m a y d o n n i k o ‘ray lik : £ = const Q u la y lik u c h u n x o 'q i n i e le k tr m a y d o n k u c h la n g a n lig i b o ‘y la b jo y la s h tir a y lik : Ё = E l. E l e m e n t a r s i l ji s h ( 4 .2 ) if o d a s i d a n f o y d a l a n i b , h i s o b l a y m iz : E d i = E dx = - d ( - E x ) . S h u n d a y q ilib , b irjin s li m a y d o n p o te n s ia li b u n d a y ifo d a la n a d i: = - Ex . ( 4 .1 2 ) N u q ta v iy z a ry a d m a y d o n in i k o ‘raylik: - Qp E = (4 .1 3 ) (4 .3 ) g a k o ‘ra: = k Q dLCoJ 9. = k Q ± = - d [ * 2 . \ r 3 г 2 г 2 V r J D e m a k , n u q ta v iy z a ry a d p o te n s ia li q u y id a g ic h a ek a n : (4 -1 4 ) N u q ta v iy z a ry a d u c h u n e k v ip o te n s ia l s ir tla r m a rk a z i z a ry a d d a jo y la s h g a n sfe rik s ir tla r d a n ib o ra td ir. P o te n sia ln i za ry a d la r taq sim otiga binoan h iso b la sh . Z a r y a d la r b ir n e c h ta b o 'l g a n id a m a y d o n p o te n s ia li s u p e r p o z its iy a p rin s ip ig a m u v o fiq to p ila d i. Z a r y a d la rn in g k o o r d in a ta la r i r boM sin, u n d a (4 .1 4 ) n in g o ‘r n ig a q u y id a g i ifo d a o ‘rin li boM adi: K o o rd ita b o s h in i m a y d o n h is o b la n a y o tg a n n u q ta g a jo y la s h tir s a k , f = 0 , U z lu k s iz ta q s im la n g a n z a ry a d la r u c h u n (4 .1 5 ) te n g lik d a n u q ta v iy z a r y a d p ( r ' ) d V b ila n , y ig ‘in d i b e lg isi in te g r a l b e lg is i b ila n a lm a s h tirila d i: ( 4 .1 5 )— (4 .1 7 ) ifo d a la r ix tiy o riy z a ry a d la r s is te m a s in in g p o te n sia li z a r y a d la r ta q s im o tig a k o ‘ra h is o b la n is h i m u m k in lig in i k o ‘rsa tm o q d a . P o t e n s ia l u ch un P u a s s o n te n g la m a si. G a u s s t e o r e m a s ig a ( 8 - § ) k o ‘ra B u te n g la m a g a (4 .6 ) n i q o ‘y sa k v a d iv g ra d cp = Acp te n g lik d a n fo y d a la n s a k , p o te n s ia l u c h u n P u a s s o n te n g la m a s in i h o sil q ila m iz : B u y e rd a д = д2 / д х 2 + д2 / д у 2 + d2 / d z 2 — L a p la s o p e r a to r i. B u (4 .1 9 ) te n g la m a n in g y e c h im i (4 .1 5 )— (4 .1 7 ) ifo d a la rd a n ib o ra t ( к = 1/4я££-0 ). P o te n sia l va en ergiyan in g saq lan ish qonuni. E le k tr m a y d o n d a h a r a k a tla n a y o tg a n z a ry a d li z a rra n i k o ‘rib c h iq a y lik . (4 .1 ) va (4 .4 ) ga k o ‘ra: b u n d a n : d E = -qdq>, d ( E + qcp) = 0, s a q la n is h q o n u n in i h o sil q ila m iz . U s h b u e n e rg iy a n in g s a q la n is h q o n u n i b a ’zi m a s a la la rn i h a r a k a t q o n u n ig a m u r o ja a t q ilm a s d a n y e c h ish im k o n in i b e ra d i. ) = k J ] Q i / n - (4 .1 6 ) (4 .1 7 ) d ivE = -B - (4 .1 8 ) (4 .1 9 ) E + qcp = const (4 .2 0 ) M a y d o n p o te n s ia lin in g k iritilis h i m u h im a h a m iy a tg a ega. P o te n s ia l s k a ly a r m iq d o r b o ‘lg a n i u c h u n u n i h is o b la s h m a y d o n k u c h l a n g a n l ik v e k to r i n i h is o b la s h g a n i s b a t a n q u la y d ir , b u n i (4 .1 5 )— (4 .1 6 ) f o r m u la la r d a n b a h o la s a h a m b o 'la d i. Ik k in c h id a n , ish yoki e n e rg iy a n i to p is h u c h u n a y n a n p o te n s ia ld a n fo y d a la n ish q u lay . U c h in c h id a n , p o te n s ia lla r fa rq i O m q o n u n id a is h tiro k e tib , b u q o n u n v a b o s h q a e ffe k tla rg a a s o s la n g a n r a q a m li v a stre lk a li v o ltm e trla r y a ra tiJg a n (4 .1 - r a s m ). E le k tr m a y d o n k u c h la n g a n lig in i t o ‘g ‘rid a n t o ‘g ‘ri o ‘lc h a y d ig a n a s b o b la r esa m a v ju d e m a s. T o ‘rtin - c h id a n , m a y d o n p o te n sia lig a k o ‘ra (4.6) fo rm u la y o rd a m id a m a y d o n k u c h la n g a n lig in i h a m to p is h m u m k in . S h u n in g u c h u n p o te n s ia l e le k tr m a y d o n in i o ‘r g a n is h n in g m u h im v o s ita s ig a a y la n g a n . 4. l-rasm. S a v o l va m a s a la la r 4.1. M aydonning potensiallik shartining 4-shaklini ayting. 4.2. M aydon potensiali nim ani hisoblashga hizm at qiladi? 4.3. V olt qanday birlik? 4.4. Potensialga k o ‘ra m aydon kuchlanganligini qanday hisoblash m um kin? 4.5. H osilani sonli hisoblashni qanday tushunasiz? 4.6. E lek tr m a y d o n id a en erg iyaning saq lan ish q o n u n i q an day ifodalanadi? 4.7. grad hosilaning fizik m a’nosi qanday? 4.8. rot hosilaning fizik m a ’nosi qanday? 4.9. Zaryad elektr m aydoni t a ’sirida harakatga kelgan b o ‘lsa, uning potensiali oshadim i, kam ayadim i? K inetik energiyasichi? 4.10. grad r y a grad ( 1 / r 2) ni hisoblang. 4.11. rot r va r o t ( r / r 3) ni hisoblang. 4.12. (4.11) tenglam a yordam ida nuqtaviy zaryad m aydoni, biijinsli m aydoni potensial m aydon ekanligi isbotlansin. 4.13. Tinch turgan elektron A maydonda qanday energiyaga va qanday tezlikka erishadi? Acp = 1M V , Acp = 10M V m aydonlardachi? 4.14. A vtom obil a k k u m u ly a to rin in g E Y U K i 12V, u n d a ja m la n - gan zary ad 60 kC b o ‘lsa, a k k u m ly a to rd a ja m la n g a n en ergiyani h is o b lang. Javob: W = 720 k J = 0.2 k W soat 5 - § . D ip o ln in g e le k t r m a y d o n i 5 .1-rasm. A t r o f i m i z d a g i m o d d a n e y t r a l a t o m v a m o le k u la la rd a n ib o ra t. A to m va m o le k u la la r o ‘z n av b a tid a m u s b a t va m an fiy z a ry a d la rd a n tu zilg an b o ‘l i b , z a r y a d l a r te k is t a q s i m l a n m a g a n i n i ifodalovchi d ip o l m o m e n tig a ega. N a tija d a n ey tral a to m v a m o le k u la la m in g e le k tr x o ssalari u la rn in g d ip o l m o m e n ti b ila n a n iq la n a d i. D ip o l d e g a n d a q a r a m a -q a rs h i ish o ra li ik ki q z a r y a d d a n ib o r a t n e y tra l s is te m a tu s h u n ila d i (5 .1 - ra s m ). D ip o l m o m e n ti d e b p = g l (5-1) k o ‘p a y t m a g a a y ti la d i. D ip o l m o m e n ti d ip o l i c h i d a g i e l e k t r m a y d o n g a n i s b a ta n te s k a r i, m a n f iy z a r y a d d a n m u s b a t z a ry a d g a y o ‘n a lg a n . D ip o l n e y tra l b o ‘ls a d a , u n d a g i z a r y a d l a r n o te k is ta q s im la n g a n i s a b a b li, e le k tr m a y d o n h o sil q ila d i. s h u m a y d o n n i o ‘rg a n a y lik . D ip o ld a n u z o q m a s o fa la r u c h u n ( l « r ) m a y d o n n i a n a litik h iso b la sh m u m k in . M a y d o n m u s b a t va m a n fiy z a r y a d d a n r+ v a r m a so fa d a iz la n a y o tg a n b o 'ls in . U n d a : ' I 1 ' = kq- r_r. (5 .2 ) 5 .2 -ra s m g a m u v o fiq =r+ + l r _ ~ ^r]+ 2lr+ * r+ + l r+ / r+ , 5.4-rasm. cp = Щ-co s# . r~ (5 .4 ) P o te n s ia l r v a 0 k o o r d in a ta la r g a b o g ‘liq , b u y e rd a 0— / v a r v e k to rla r o ra s id a g i jo y la s h g a n . B u k o o r d in a ta la r b o ‘y i c h a h o s ila o lib , m a y d o n k u c h la n g a n lig in i h is o b la y m iz : „ dtp 2 kp Er = = — j- c o s 0 , dr r E0 = - I | ? = ^ s i n 0 . (5 .5 ) (5 .6 ) г дв r K u c h la n g a n lik n in g ta s h il e tu v c h ila ri o ‘z a ro tik boM gani u c h u n : E = tJe? + E l = Vl + 3cos20. (5 .7 ) (5 .3 ) i f o d a d a n d e k a r t k o o r d in a ta la r i b o ‘y ic h a h o s ila o lib , k u c h la n g a n lik n in g d e k a rt ta sh k il e tu v c h ila r in i h a m y o z is h m u m kin: E - d(P I ; [ Px I Эх { Г3 r 5 J £ * L & . + M S 1 r r 3 £ , . 2 £ = + z Эг /-3 /-3 (5 .8 ) U la r g a a s o s a n £ = ^ E 2 + E 2 + E 2 Z h is o b la n s a , y a n a (5 .7 ) ifo d a to p ila d i. S h u n d a y q ilib , d ip o ln in g m a y d o n k u c h la n g a n lig i m a s o fa o sh ish i b ilan - 1 / r 5 ju d a te z k a m a y ib b o ra r e k a n . B u n d a n ta s h q a ri m asofa d o im iy b o ig a n d a h a m k u c h la n g a n lik d ip o ln in g y o ‘nalishiga b o g 'liq (5 .1 - r a s m ) . M a s a la n d ip o l m o m e n ti y o ‘n a lis h id a ( 0 = 0 yoki 9 = я ) m a y d o n E = 2 k p / r 3 b o ‘lsa, d ip o l m o m e n tig a tik y o 'n a lis h d a { 9 = л / 2 ) m a y d o n ikki m a r ta k a m ro q : E = k p / r ‘ D ip o l m o m e n ti y o 'n a lis h id a m a y d o n k u c h la n g a n lig i ra d iu s b o 'y la b y o 'n a lg a n ( E r ф 0, E e = 0 ) , d ip o l m o m e n tig a tik y o ‘n a lis h d a esa m a y d o n k u c h la n g a n lig i ra d iu sg a tik y o ‘n a lg a n ( Eg * 0, Er = 0 ). D ip o ln in g o 'lc h a m i a to m -m o le k u la la r o ‘lc h a m la rid a b o ig a n id a Download 48 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling