Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
σ
1 (x) = q(x), σ 2 (x) = −q 0 (x), σ 3 (x) = q 00 (x) − q 2 (x), σ k+1 (x) = −σ 0 k (x) − k−1 X j=1 σ k−j (x)σ j (x), k = 2, n. (3.3.27 0 ) Oxirgi tengliklardan, xususan σ k+1 (x) = (−1) k q (k) (x) + S k−2 (x) ekanligi kelib chiqadi. Bu yerda S k−2 (x) funksiya q(x), q 0 (x), ..., q (k−2) (x) funksiyalarga nis- batan ko‘phad. Endi (3.3.27) tenglikni ushbu σ 0 n (x, λ) + 2iλσ n (x, λ) − σ n+1 (x) = = − n X p=1 n X j=p σ n+p−j (x)σ j (x) (2iλ) p − σ 2 n (x, λ) (2iλ) n − 2σ n (x, λ) n X k=1 σ k (x) (2iλ) k ko‘rinishda yozib, undan σ 0 n+1 (x, λ) + 2iλσ n (x, λ) = σ n+1 (x) + o(1) bo‘lishini topamiz. (3.3.24)-(3.3.26) formulalardan σ 0 n (x, λ) + 2iλσ n (x, λ) = ϕ 1 (x) + u 0 n+1 (x) + o(1) tenglik kelib chiqadi. Shuning uchun u 0 n+1 (x) = σ n+1 (x) − ϕ 1 (x) 158 tenglik o‘rinli bo‘ladi. Bu tenglikni quyidagi ko‘rinishda yozib olamiz: x Z 0 u 0 n+1 (x − ξ)e −2iλξ dξ = x Z 0 σ n+1 (x − ξ)e −2iλξ dξ − x Z 0 ϕ 1 (x − ξ)e −2iλξ dξ. Oxirgi integralga bo‘laklab integrallash amalini qo‘llab, ϕ 1 (0) = 0 va ϕ 1 (x) ∈ W 2 2 (0, π) munosabatlardan foydalanib, x Z 0 u 0 n+1 (x − ξ)e −2iλξ dξ = x Z 0 σ n+1 (x − ξ)e −2iλξ dξ− ϕ 1 (x) 2iλ + 1 2iλ x Z 0 ϕ 0 1 (x − ξ)e −2iλξ dξ tenglikni hosil qilamiz. Yuqoridagi integralning qiymatini (3.3.15) va (3.3.16) tengliklarning o‘ng tarafiga qo‘yib, u n+1 (x, λ) = u n+1 (x) + 1 2iλ x Z 0 q(t)u n+1 (t)dt + ϕ 1 (x) 2iλ − x Z 0 σ n+1 (x − ξ)e −2iλξ dξ− − 1 2iλ x Z 0 ϕ 1 1 (x − ξ)e −2iλξ dξ − 1 2iλ x Z 0 K (0) n+1 (x, ξ)e −2iλξ dξ = = x Z 0 {σ n+1 (ξ) − ϕ 1 (ξ)}dξ + 1 2iλ x Z 0 q(t)U n+1 (t)dt + ϕ 1 (x) − − x Z 0 σ n+1 (x − ξ)e −2iλξ dξ + 1 2iλ x Z 0 ˜ K (0) n+1 (x, ξ)e −2iλξ dξ , (3.3.28) u 0 n+1 = 2iλ x Z 0 σ n+1 (x − ξ)e −2iλξ dξ − ϕ 1 (ξ) + x Z 0 ˜ K (1) n+1 (x, ξ)e −2iλξ dξ (3.3.29) tengliklarni hosil qilamiz. Bu yerda ˜ K (j) n+1 (x, ξ) = K (j) n+1 (x, ξ) + ϕ 0 1 (x − ξ), j = 0, 1 yadrolar ham ξ o‘zgaruvchiga nisbatan kvadrati bilan integrallanuvchi funksiyalar. Nihoyat, (3.3.24), (3.3.29) tengliklarni (3.3.25), (3.3.26) baholar bilan solishtirib, σ n (x, λ) qoldiq had uchun σ n (x, λ) = 2iλ x R 0 σ n+1 (x − ξ)e −2iλξ dξ + x R 0 ˜ K (1) n+1 (x, ξ)e −2iλξ dξ 2iλQ n (x, λ) + O µ 1 λ 2 ¶ (3.3.30) tasvirni topamiz. 159 4-§. Dirixle chegaraviy masalasi xos qiymatlari va lakunalar uzunliklarining asimptotikasini aniqlashtirish Ushbu −y 00 + q(x)y = λ 2 y, x ∈ R (3.4.1) Xill tenglamasiga qo‘yilgan y(0) = 0, y(π) = 0 (3.4.2) Dirixle chegaraviy masalasini qaraylik. Bu yerda q(x) haqiqiy, π davrli funksiya bo‘lib, quyidagi shartlarni qanoatlantirsin: q (j) (x) ∈ C[0; π], q (j) (0) = q (j) (π), q (n) (x) ∈ L 1 (0; π), q (j) (x) = d j dx j q(x), j = 1, n − 1 (3.4.3) {ξ k } ∞ k=1 orqali (3.4.1)+(3.4.2) Dirixle chegaraviy masalasining xos qiymatlari ketma-ketligini belgilaymiz. (3.4.1) Xill tenglamasining (3.3.20) ko‘rinishidagi yechimini olamiz, ya’ni y(x, λ) = exp{iλx + x Z 0 σ(t, λ)dt}, (3.4.4) y 0 (x, λ) = {iλ + σ(x, λ)} exp{iλx + x Z 0 σ(t, λ)dt}. Bu yerda y(0, λ) = 1, y 0 (0, λ) = iλ + σ(0, λ), y 0 (0, −λ) = −iλ + σ(0, −λ). (3.4.1) tenglamaning ikkinchi yechimi sifatida y(x, −λ) = exp{−iλx + x Z 0 σ(t, −λ)dt} (3.4.5) funksiyani olishimiz mumkin. Chunki, y(x, λ) va y(x, −λ) yechimlardan tuzilgan Vronskiy determinanti uchun W {y(x, λ), y(x, −λ)} = 2iλ + σ(0, λ) − σ(0, −λ) 6= 0 tenglik o‘rinli. 160 Agar c(x, λ) va s(x, λ) orqali (3.4.1) tenglamaning mos ravishda c(0, λ) = 1, c 0 (0, λ) = 0 va s(0, λ) = 0, s 0 (0, λ) = 1 boshlang‘ich shartlarni qanoatlantiruvchi yechimlarini belgilasak, u holda c(x, λ) = y(x, λ)[iλ − σ(0, −λ)] + y(x, −λ)[iλ + σ(0, λ)] 2iλ + σ(0, λ) + σ(0, −λ) , s(x, λ) = y(x, λ) − y(x, −λ) 2iλ + σ(0, λ) + σ(0, −λ) formulalar o‘rinli bo‘ladi. Bundan foydalanib, (3.4.1)+(3.4.2) Dirixle chegaraviy masalasi uchun xarakteristik tenglamani topamiz: y(π, λ) − y(π, −λ) = 0. (3.5.4) (3.4.4) formulaga ko‘ra (3.4.5) tenglama exp{−iλπ + π Z 0 σ(t, λ)dt} − exp{−iλπ + π Z 0 σ(t, −λ)dt} = 0 ko‘rinishni oladi. Bundan sin{λπ + 1 2i π Z 0 [σ(t, λ) − σ(t, −λ)]dt} = 0 (3.4.6) tenglik kelib chiqadi. (3.3.23) yoyilmaga ko‘ra π Z 0 σ(t, λ)dt = π Z 0 ( n X k=1 σ k (t) (2iλ) k ) dt + π Z 0 σ k (t, λ) (2iλ) n dt = = n X k=1 1 (2iλ) k π Z 0 σ k (t)dt + 1 (2iλ) n π Z 0 σ n (t, λ)dt = = n X k=1 (−1) k i k (2λ) k a k + δ n (λ) (2iλ) n+1 = = [ n−1 2 ] X m=0 (−1) 2m+1 i 2m+1 (2λ) 2m+1 a 2m+1 + [ n 2 ] X m=1 (−1) 2m i 2m (2λ) 2m a 2m + δ n (λ) (2iλ) n+1 = = −i [ n−1 2 ] X m=0 (−1) m a 2m+1 (2λ) 2m+1 + [ n 2 ] X m=1 (−1) m a 2m (2λ) 2m + δ n (λ) (2iλ) n+1 . (3.4.7) 161 Bu yerda a k = π Z 0 σ k (t)dt, δ n (λ) = π Z 0 σ n (t, λ)dt (3.4.8) va [x] bilan x sonning butun qismi belgilangan: · n − 1 2 ¸ = ½ p − 1, n = 2p, p, n = 2p + 1, hn 2 i = ½ p, n = 2p, p, n = 2p + 1. Ikkinchi tomondan (3.3.19) belgilashga ko‘ra π Z 0 σ(t, λ)dt = ln à 1 + n X k=1 u k (π) (2iλ) k + u n+1 (t, λ) (2iλ) n+1 ! (3.4.9) tenglikni topamiz. ˆIxirgi tenglikni (3.4.7) tenglik bilan taqqoslasak va (3.3.10‘) tenglikdan foydalansak, δ n (λ) = a n+1 − u n+1 (π) + u n+1 (π, λ) + O µ 1 λ ¶ = a n+1 − θ n (π, λ) + O µ 1 λ ¶ (3.4.10) formula hosil bo‘ladi. Endi (3.4.10) ifodani (3.4.7) tenglikga qo‘ysak, π Z 0 σ(t, λ)dt = −i [ n 2 ] X m=0 (−1) m a 2m+1 (2λ) 2m+1 + [ n+1 2 ] X m=1 (−1) m a 2m (2λ) 2m − −iIm ½ θ n (π, λ) (2iλ) n+1 ¾ − Re ½ θ n (π, λ) (2iλ) n+1 ¾ + O µ 1 λ n+2 ¶ (3.4.11) asimptotika kelib chiqadi. Buni (3.4.6) tenglikga qo‘yib, sin λπ − [ n 2 ] X m=0 (−1) m a 2m+1 (2λ) 2m+1 − Im · θ n (π, λ) (2iλ) n+1 ¸ + O µ 1 λ n+2 ¶ = 0 (3.4.12) tenglamani hosil qilamiz. Bundan (λ − k)π − [ n 2 ] X m=0 (−1) m a 2m+1 (2λ) 2m+1 − Im · θ n (π, λ) (2iλ) n+1 ¸ + O µ 1 λ n+2 ¶ = 0 ekanligini topamiz. Agar λ 2 k = ξ k , k = 1, ∞ haqiqiy sonlar ketma-ketligi (3.4.1)+(3.4.2) Dirixle chegaraviy masalasining xos qiymatlaridan iborat bo‘lsa, u holda k → ∞ da ushbu λ k = k + ε k , ε k = O µ 1 k ¶ , λ −p k = k −p µ 1 + O µ 1 k 2 ¶¶ 162 asimptotikalarning o‘rinli ekani ma’lum. Yuqoridagi tenglikda λ = λ k desak, ε k uchun ε k − 1 π [ n 2 ] X m=0 (−1) m a 2m+1 (2k + 2ε k ) 2m+1 − 1 π Im · θ n (π, k + ε k ) (2i(k + ε k )) n+1 ¸ + O µ 1 k n+2 ¶ = 0 (3.4.13) tenglama hosil bo‘ladi. Bu tenglamadagi θ n (π, k + ε k ) ifoda uchun quyidagi θ n (π, k+ε k ) = (−1) n e −2i(k+ε k )π π Z 0 q (n) (t)e 2i(k+ε k )t dt = (−1) n π Z 0 q (n) (t)e 2ik dt+O µ 1 k ¶ tenglik o‘rinli. Agar ˜ θ n (k) = (−1) n π Z 0 q (n) (t)e 2ikt dt (3.4.14) belgilashni kiritsak, yuqoridagi tenglik ushbu θ n (π, k + ε k ) = ˜ θ n (k) + O µ 1 k ¶ ko‘rinishni oladi. Buni hisobga olib, (3.4.13) tenglikni ε k − 1 π [ n 2 ] X m=0 (−1) m a 2m+1 (2k + 2ε k ) 2m+1 − 1 π Im " ˜ θ n (k) (2i(k + ε k )) n+1 # + O µ 1 k n+2 ¶ = 0 (3.4.15) ko‘rinishda yozamiz. Bu tenglamani tekshirishni osonlashtirish maqsadida f (z) = 1 π [ n 2 ] X m=0 (−1) m a 2m+1 z 2m+1 funksiyani kiritamiz. Bu yerda f (0) = 0, f 0 (0) = a 1 π 6= 0 va f (−z) = −f (−z) ekanligi ravshan. Bundan foydalanib, (3.4.15) tenglamani quyidagicha yozish mumkin: ε k − f µ 1 2k + 2ε k ¶ = 1 π Im " ˜ θ n (k) (2i(k + ε k )) n+1 # + O µ 1 k n+2 ¶ . (3.4.16) ε(y) orqali ushbu ε(y) − f µ y 1 + 2yε(y) ¶ = 0, y = 1 2k (3.4.17) tenglamaning ε(0) = 0, ε 0 (0) = a 1 π 6= 0 shartlarni qanoatlantiruvchi analitik yechimini belgilaymiz. f (z) analitik funksiya toq bo‘lganligi uchun −ε(−y) anal- itik funksiya ham (3.4.17) tenglamaning yechimi bo‘ladi. Analitik yechimning 163 yagonaligidan esa ε(y) = −ε(−y) kelib chiqadi. Shuning uchun ε(y) = ∞ X j=0 b 2j+1 y 2j+1 (|y| < r, r > 0) yoyilma o‘rinli. Agar (3.4.17) tenglamada y = 1 2k , ¡ 1 2k < r ¢ deb olsak, u holda u ε µ 1 2k ¶ − f à 1 2k + 2ε ¡ 1 2k ¢ ! = 0 (3.4.18) ko‘rinishni oladi. Endi (3.4.18) tenglikni (2.2.16) tenglikdan ayirib, ushbu ε k − ε µ 1 2k ¶ − f µ 1 2k + 2ε k ¶ + f à 1 2k + 2ε ¡ 1 2k ¢ ! = = 1 π Im ( ˜ θ n (k) [2i(k + ε k )] n+1 ) + O µ 1 k n+2 ¶ (3.4.19) tenglikni hosil qilamiz. f (z) funksiyaning aniqlanishidan foydalanib, f µ 1 2k + 2ε k ¶ − f à 1 2k + 2ε ¡ 1 2k ¢ ! = · ε k − ε µ 1 2k ¶¸ O µ 1 k 2 ¶ formulani topamiz. Bu baholashni (3.4.19) tenglikning chap tomoniga qo‘ysak, · ε k − ε µ 1 2k ¶¸· 1 + O µ 1 k 2 ¶¸ = 1 π Im ( ˜ θ n (k) [2i(k + ε k )] n+1 ) + O µ 1 k n+2 ¶ (3.4.20) baholash kelib chiqadi. Bu yerda ε µ 1 2k ¶ = [ n−1 2 ] X m=0 b 2m+1 µ 1 2k ¶ 2m+1 + O µ 1 k n+2 ¶ . Topilgan kattaliklarning qiymatlarini o‘rinlariga qo‘ysak, Dirixle chegaraviy masalasining ξ k = λ 2 k xos qiymatlari uchun p ξ k = λ k = k + ε k , p ξ k = k + C 1 k + C 3 k 3 + ... + C 2p+1 k 2p+1 + C n+1 (k) k n+1 + O µ 1 k Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling