Xill tenglamasi uchun teskari masalalar va ularning tatbiqlari
Download 1.14 Mb. Pdf ko'rish
|
xill tenglamasi uchun teskari ma
n
, n ≥ 2. U holda (1.7.1) yoyilma quyidagi 2 + ∆(λ) = (λ 1 − λ 2 )(λ − λ 2 )f 2 (λ) (1.7.3) ko‘rinishni oladi. Bu yerda f (λ) = π ∞ Y n=1 λ 2n − λ (2n + 1) 2 butun funksiya. Quyidagi F (x, λ) = s(x + π, λ) + s(x, λ) f (λ) funksiya ham, har bir tayinlangan x larda λ bo‘yicha butun funksiya bo‘lishini ko‘rsatamiz. Buning uchun ushbu s(x + π, λ) = s(π, λ)c(x, λ) + s 0 (π, λ)s(x, λ) yoyilmadan foydalanib, F (x, λ) funksiyani quyidagicha yozib olamiz: F (x, λ) = s(π, λ) f (λ) c(x, λ) + s 0 (π, λ) + 1 f (λ) s(x, λ). (1.7.4) Ma’lumki, λ soni ∆(λ) + 2 = 0 tenglamaning ikki karrali ildizi bo‘lsa, u holda s(π, λ) = 0, s 0 (π, λ) = −1 tengliklar bajariladi. (1.7.4) tenglikka ko‘ra maxrajn- ing ildizlari, suratning ham ildizlari bo‘ladi. Bundan F (x, λ) funksiyaning tayin- langan x larda λ o‘zgaruvchiga nisbatan butun funksiya bo‘lishi kelib chiqadi. 89 Endi, ushbu F (− π 2 , λ) = s( π 2 , λ) + s(− π 2 , λ) f (λ) butun funksiyani asimptotikasini o‘rganamiz. Buning uchun (1.6.9) asimptotik formulalardan foydalanamiz. Bu asimptotikalarni aniqlashtirish maqsadida q(x) funksiyani yetarli darajada differensiallanuvchi deb faraz qilsak, quyidagi ∆(λ) + 2 = 4 cos 2 kπ 2 + sin kπ 2 cos kπ 2 2k 3 π R 0 q 2 (x)dx+ +2 sin kπ 2 cos kπ 2 8k 5 · π R 0 q 3 (x)dx + π R 0 q 02 (x)dx ¸ + O( e |kπ| k 6 ) , s(x, λ) = sin kx k − cos kx 2k 2 a(x) + sin kx 4k 3 h q(x) + q(0) − a 2 (x) 2 i + + cos kx 8k 4 · a 3 (x) 3! − x R 0 q 2 (t)dt − a(x)(q(x) + q(0)) + q 0 (x) − q 0 (0) ¸ + + sin kx 16k 5 · a 4 (x) 4! − a(x) x R 0 q 2 (t)dt + 5 2 (q 2 (x) + q 2 (0)) + q(x)q(0)− −q 00 (x) + q 00 (0) + a(x)(q 0 (x) − q 0 (0)) − a 2 (x) 2 (q(x) + q(0)) i + O ³ e |Imk |x k 6 ´ (1.7.5) asimptotikalarga ega bo‘lamiz. (1.6.9) asimptotik formulalarga ko‘ra quyidagi s( π 2 , λ) + s(− π 2 , λ) = cos kπ 2 k 2 h −a( π 2 ) + 1 k n q 0 ( π 2 )−q 0 (0) 4 − q( π 2 )a( π 2 ) 4 − − q(0)a( π 2 ) 4 + a 3 ( π 2 ) 4! − 1 8 π 2 R 0 q 2 (x)dx − 1 8 − π 2 R 0 q 2 (x)dx )# + O µ e | kπ 2 | k 5 ¶ . (1.7.6) asimptotikaga ega bo‘lamiz. (1.7.3) yoyilmadan, ushbu f (λ) = (λ − λ 1 ) − 1 2 (λ − λ 2 ) − 1 2 (2 + ∆(λ)) 1 2 (1.7.7) tenglikni hosil qilamiz. Endi, ushbu (1 + x) α = 1 + α x + O(x 2 ), x → 0 asimp- totikadan foydalanib quyidagi (λ − λ 1 ) − 1 2 = (k 2 − λ 1 ) − 1 2 = 1 k + λ 1 2k 3 + O( 1 k 5 ), (λ − λ 2 ) − 1 2 = (k 2 − λ 1 ) − 1 2 = 1 k + λ 2 2k 3 + O( 1 k 5 ), (1.7.8) (λ − λ 1 ) − 1 2 (λ − λ 2 ) − 1 2 = 1 k 2 + λ 1 + λ 2 2k 4 + O( 1 k 5 ) 90 baholarni keltirib chiqaramiz. (1.7.5) va (1.7.8) ifodalarni (1.7.7) tenglikka qo‘yib quyidagi asimptotik formulani topamiz: f (λ) = 2 cos kπ 2 k 2 + cos kπ 2 k 4 (λ 1 + λ 2 ) + sin kπ 2 8k 5 π Z 0 q 2 (x)dx + O Ã e| kπ 2 | k 6 ! . (1.7.9) U holda (1.7.9) asimptotik formulaga ko‘ra lim |λ|→∞ F (− π 2 , λ) = − a( π 2 ) 2 tenglik o‘rinli. Bundan F (− π 2 , λ) butun funksiyaning chegaralangan ekanligi kelib chiqadi. Liuvill teoremasiga ko‘ra chegaralangan butun funksiya o‘zgarmasdan iborat bo‘ladi. Demak, F (− π 2 , λ) = − 1 2 a( π 2 ), ya’ni s( π 2 , λ) + s(− π 2 , λ) = − 1 2 a( π 2 )f (λ). (1.7.6) va (1.7.9) asimptotik formulalarga asosan q 0 ( π 2 )−q 0 (0) 4 − q( π 2 )a( π 2 ) 4 − q(0)a( π 2 ) 4 + a 3 ( π 2 ) 4! − − 1 8 π 2 R 0 q 2 (x)dx − 1 8 − π 2 R 0 q 2 (x)dx = − λ 1 +λ 2 2 a( π 2 ). (1.7.10) tenglik o‘rinli bo‘ladi. Agar q(x) funksiya o‘rnida q(x + τ ) funksiyani qarasak va yarimdavriy chegaraviy masalaning xos qiymatlari τ ga bog‘liq emasligini hisobga olsak, (1.7.10) tenglik quyidagi ko‘rinishni oladi: q 0 (x+ π 2 )−q 0 (x) 4 − q(x+ π 2 )a(x+ π 2 ) 4 − q(x)a(x+ π 2 ) 4 + a 3 (x+ π 2 ) 4! − − 1 8 x+ π 2 R x q 2 (t)dt − 1 8 x− π 2 R x q 2 (t)dt = − λ 1 +λ 2 2 a(x + π 2 ) . Nihoyat, q(x) = q e (x) + I 0 (x) va a(x + π 2 ) = −2I(x) ekanligidan foydalansak, (1.7.2) formulaga ega bo‘lamiz. Yetarliligi. Faraz qilaylik, q(x) funksiya (1.7.2) tenglikni qanoatlantirsin. U holda (1.4.1) Xill tenglamasi uchun qo‘yilgan yarimdavriy chegaraviy masalaning λ 1 va λ 2 lardan boshqa barcha xos qiymatlari ikki karrali bo‘lishini ko‘rsatamiz. (1.7.2) tenglikni differensiallab va I 2 ga ko‘paytirib, quyidagi (q e I 2 ) 0 = (λ 1 + λ 2 )II 0 + I 0 I 3 + II 000 2 tenglikni topamiz. Bu tenglikni integrallab, quyidagi q e (x) = λ 1 + λ 2 2 + I 2 (x) 4 + 2I(x)I 00 (x) − I 02 (x) + 4a 2 4I 2 (x) (1.7.11) 91 tenglikka ega bo‘lamiz. Bu yerda 4a 2 shunday tanlanadiki, I = 0 bo‘ladigan barcha nuqtalarda I 0 = 4a 2 qilib olinadi. Natijada q e (x) funksiya regulyar bo‘ladi. Endi quyidagi y 00 + · λ − I 0 (x) + I 2 (x) 4 − 2I(x)I 00 (x) − I 02 (x) + 4a 2 4I 2 (x) ¸ y = 0 (1.7.12) tenglamani (y(0) = −y(π), y 0 (0) = −y 0 (π)) yarimdavriy chegaraviy shart bilan birga qaraymiz. Bu yerda λ = λ 1 +λ 2 2 = 0 deb olinadi. Yarimdavriy chegaraviy masalaning har bir xos qiymati ikki karrali ekanligini ko‘rsatish uchun, bitta xos qiymatga ikkita yarimdavriy, chiziqli erkli yechimlar mavjudligini ko‘rsatishimiz yetarli. Dastlab quyidagi lemmani isbot qilamiz. Ushbu T y(x) ≡ f (x)y(x + π 2 ) + I(x)y 0 (x + π 2 ) tenglik bilan aniqlangan T almashtirishni qaraymiz. Bu yerda f (x) = − 1 2 (2λ + I 0 (x) − I 2 (x)). (1.7.13) Lemma 1.7.1. Agar y 1 (x) = y(x) funksiya (1.7.12) tenglamani qanoatlantir- sa, u holda ushbu y = y 2 (x) = T y(x) (1.7.14) funksiya ham (1.7.12) tenglamani qanoatlantiradi. Isbot. y 2 (x) funksiyaning birinchi va ikkinchi tartibli hosilalarini hisoblaymiz: y 0 2 (x) = f 0 (x)y(x + π 2 ) + f (x)y 0 (x + π 2 ) + I 0 (x)y 0 (x + π 2 ) + I(x)y 00 (x + π 2 ) = = f 0 (x + π 2 )y(x + π 2 ) + (f (x) + I 0 (x))y 0 (x + π 2 )+ +I(x) ½ −I 0 + I 2 4 + 2II 00 − I 02 + 4a 2 4I 2 − λ ¾ y(x + π 2 ) = = ½ f 0 (x + π 2 ) − II 0 − I 3 4 + 2II 00 − I 02 + 4a 2 4I λI ¾ y(x + π 2 )+ +{f (x) + I 0 (x)}y 0 (x + π 2 ) = = ½ I 00 (x) 2 + I(x)I 0 (x) − II 0 − I 3 4 + I 00 2 + 4a 2 − I 02 4I − λI ¾ y(x + π 2 )+ +{f (x) + I 0 (x)}y 0 (x + π 2 ) ; y 00 2 (x) = ½ I 000 − 3I 2 I 0 4 + −2I 0 I 00 I − (4a 2 − I 02 )I 4I 2 − λI 0 ¾ y = 92 = − ½ λ − I 0 (x) − I 2 (x) 4 − 2I 0 (x)I 00 (x) − I 02 (x) + 4a 2 4I 2 (x) ¾ × × ³ f (x)y(x + π 2 ) + I(x)y 0 (x + π 2 ) ´ . (1.7.12) tenglamadan foydalanib, quyidagi tengliklarni topamiz: g(x) = − ½ I 0 (x) + I 2 (x) 4 + 2I 0 (x)I 00 (x) − I 02 (x) + 4a 2 4I 2 (x) − λ ¾ ; g(x + π 2 ) = − ½ −I 0 + I 2 4 + 2I 0 I 00 − I 02 + 4a 2 4I 2 − λ ¾ ; y 0 2 = f 0 (x)y(x + π 2 ) + f (x)y 0 (x + π 2 ) + I 0 (x)y 0 (x + π 2 ) + I(x)g(x + π 2 )y(x + π 2 ) y 00 2 = g(x)y 0 2 (x) = q(x) ³ f (x)y(x + π 2 ) + I(x)y 0 (x + π 2 ) ´ = = f (x)g(x)y(x + π 2 ) + I(x)g(x)y 0 (x + π 2 ); y 00 2 = f 00 (x)y(x + π 2 ) + f 0 (x)y 0 (x + π 2 ) + f 0 (x)y 0 (x + π 2 )+ +f (x)g(x + π 2 )y(x + π 2 ) + I 00 (x)y 0 (x + π 2 ) + I 0 (x)g(x + π 2 )y(x + π 2 )+ + ³ I 0 g(x + π 2 ) + Ig 0 (x + π 2 ) ´ y(x + π 2 ) + I(x)g(x + π 2 )y(x + π 2 ) = = {f 00 (x) + f (x)g(x + π 2 ) + I 0 (x)g(x + π 2 ) + I 0 (x)g(x + π 2 )+ +I(x)g 0 (x + π 2 ) o y(x + π 2 ) + n 2f 0 (x) + I 00 (x) + I(x)g(x + π 2 ) o y 0 (x + π 2 ); 2f 0 (x) + I 00 (x) + I(x)g(x + π 2 ) = 2 µ − I 00 2 + 2II 0 2 ¶ = −I 00 + 2II 0 + I 00 + +I µ −I 0 + I 2 4 + 2II 00 − I 02 + 4a 2 4I 2 − λ ¶ = I ½ 2I 0 − I 0 + 2II 00 − I 02 + 4a 2 4I 2 − λ ¾ = = I µ I 0 + I 2 4 + 2II 00 − I 02 + 4a 2 4I 2 − λ ¶ = I(x)g(x); y 00 = ½ I 0 (x) + I 2 (x) 4 + 2I(x)I 00 (x) − I 02 (x) + 4a 2 4I 2 (x) − λ ¾ y = g(x)y(x); y 00 (x + π 2 ) = ½ −I 0 (x) + I 2 (x) 4 + 2I(x)I 00 (x) − I 02 (x) + 4a 2 4I 2 (x) − λ ¾ y(x + π 2 ) = = g(x + π 2 )y(x + π 2 ); 93 y 00 (x + π 2 ) = [g(x) − 2I 0 (x)]y(x + π 2 ) = g(x)y(x + π 2 ) − 2I 0 (x)y(x + π 2 ); y 0 2 = f 0 (x)y(x + π 2 ) + f (x)y 0 (x + π 2 ) + I 0 (x)y 0 (x + π 2 ) + I(x)g(x + π 2 )y(x + π 2 ); y 00 2 = f 00 (x)y(x + π 2 ) + f 0 (x)y 0 (x + π 2 ) + f 0 (x)y 0 (x + π 2 ) + f (x)g(x + π 2 )y(x + π 2 )+ +I 00 (x)y 0 (x+ π 2 )+I 0 (x)g(x+ π 2 )y(x+ Download 1.14 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling