2021 Mundarija


Download 0.78 Mb.
bet9/10
Sana05.01.2023
Hajmi0.78 Mb.
#1079323
1   2   3   4   5   6   7   8   9   10
Bog'liq
327798 (1)

Birinchi chegaraviy masalani yechish. Biz endi tebranish tenglamasi uchun G = {0 < x < 1,0 < t < T} sohada ushbu birinchi chegaraviy masalani ko’rib chiqamiz. Yani G sohada ikki marta uzluksiz differensiallanuvchi u(x, t)
funksiyanitopishkerakki , bu sohadau
= (1.5.10)
tenglamani qanoatlantirib, t = 0 to’g’ri chiziqda



u(x,0) = Q(x), (x,0) =Ψ (x)
dastlabki shartlarniva
u(0, t) = μ1 (t), u(1, t) = μ2 (t), 0 < t < T


(1.5.11)
(1.5.12)

Chegaraviy shartlarni qanoatlantirsin. Bu maslani to’r metodi bilan yechish uchun
ushbu
Ghτ = {xi = ih, i = 0, M, hM = 1;tk = kτ, k = 0, N, Nτ = T}
To’rni kiritamiz va 1.3-chizmadagidek uch qatlamli andaza bo’yicha (1.5.1) differensial tenglamani (1.5.3) dagi ayirmali sxema bilan almashtiramiz, bu yerda
i va k quyidagi qiymatlarni qabul qiladi:
i = 1,2,......, M - 1; k = 1,2,....., N - 1
Dastlabki shartlar uchun (1.5.7) formuladan foydalanamiz. Chegaraviy
shartlar quyidagichayoziladi:
y0+1 = μ1 (tk+1), yM1 = μ2 (tk+1), k = 0,1,...., N - 1
Bularning hammasini birlashtirib, ayirmali sxemaning quyidagi hisoblash
algoritmiga egabo’lamiz:



yi = Q(xi ), yi = Q(xi )+τΨ(xi )+ Δ 2Qi ,
yi+1 = 2yi +τ2 Δ 2 yi - yi -1 , i = 1,2,....., M - 1,
y0+1 = μ1 (tk+1), yM1 = μ2 (tk+1), k = 0,1,......, N - 1


(1.5.13)
(1.5.14)
(1.5.15)

Yuqorida ko’rdikki, bu sxema (1.5.1), (1.5.3) chegaraviy masalani 0(τ2 + h2 ) aniqlikda approksimatsiya qiladi. Ko’rsatish mumkinki, agar ixtiyoriy ε > 0
uchun τ va h qadamlar quyidagi
< (1.5.16)
Shartni qanoatlantirsa , (1.5.7), (1.5.10), (1.5.11) sxema turg’un bo’ladi. Biz buning
isbotiga to’xtalib o’tirmaymiz.
Misol. To’r metodi bilan G = {0 < x <1, 0 < t < T} sohada
δ 2 u δ 2 u
=
δt 2 δx2
To’rtenglamasining
u(0, t) = u(1, t) = 0(0 < t < 1),
u(x,0) = sinπx, (x,0) = 0
Chegaraviy va dastlabki shartlarni qanoatlantiradigantaqribiy yechimi topilsin.



Yechish. Bu yerda h = 0,1 va Q(x) = sinτx, Q" (x) = 一τ2 sinπx hamda Ψ(x) = 0
quyidagichayozamiz:


τ = 0.08 deb olamiz. Keyin liginihisobga olib, (6.5) formulani

yi = yi + Q" (xi ) = (1 0.0032π2 )sinπxi
Endi Δ 2 operatorning korinishini etiborga olsak, hisoblash uchun quyidagi
algoritm hosilbo’ladi:
yi = sinπxi , yi = (1 0.0032π2 )sinπxi , i = 1,2,......, M 1,
y 0+1 = yM1 = 0, k = 0,1,........, N 一 1,
yi+1 = 0.64y 1 + 0.72yi + 0.64yik1 yi 1
Hisoblashni faqat 0 < x < uchun bajarsa yetarli bo’ladi, chunki u = u(x, t)
yechimning grafigi x = tekislikkanisbatan simmetrik ravishda joylashgan.
I bobning qisqacha xulosasi

I bobdaxususiy hosilali differensial tenglamalarnitaqribiy yechish metodlari
haqida gapirilgan.
II bob. Xususiy hosilali differensial tenglamalarni Mathcad muhitida taqribiy
yechish
2.1. Elliptik tenglamalarni Mathcad dasturiyordamida taqribiy yechish.



Faraz qilamiz:
chegaraviy shartlar
u(A, y) = u(y)1
u(x, C) = u(x)3
bilan
ux ,x + uy ,y = f (x,y)
u(B,y) = u(y)2
u(x,D) = u(x)4
A < x < B C < y < D

tenglamani sonli yechish talab qilingan bo’lsin.
ui-1,j - 2ui , j + ui+1, j ui ,j-1 - 2ui , j + ui , j+1

h k ,
2 + 2 = yi j



i = 1,..N - 1
ayirmali sxema bilan almashtiramiz.


j = 1,..M - 1


Bu sistemani yechib: yi ,j i = 1,..N
taqribiy yechiminitopamiz .
Konkret bir masalani qaraymiz.


j := 0,1..M

u(x1 , x2 ) + u(x1 , x2 ) = 2x2
f (x1 , x2 ) := -2(x1 + x2 )
u(0, x2 ) = 0 μ chap- μleft (x2 ) := 0
u(x1 ,0) = 0 μ quyi- μbottom (x1 ) := 0



u(1, x2 ) = x2 + (x1 )2
u(x1 ,1) = (x ) + x11


μright (x2 ) := x2 + x2
μtop (x1 ) := x12 + x1

tenglamaning aniq yechimi:


u(x1 , x2 ) := x12x2 + x1x22

G = {(x1 , x2 ) : 0 < x1 < 1,0 < x2 < 1}
ekanligima’lum.


N := 5 M := 5 a:= 0 b:= 1 c := 0 d := 1 h := l :=
h
yj ,0 := μleft (x2,j )
= 0.2 l = 0.2 i := 0...N j := 0..M x1,,i := ih x2,j := jl



yj ,N := μright (x2,j ) y0,i := μbottom (x1,i )


yM ,i := μtop (x1,i ) j := 0..M - 2 i := 0...N

(
|
|
|
|

| | | |

- 0.4 - 0.8 - 1.2 - 1.6 - 2 -
|

2.4] | 2.8 | 3.2| | 3.6」
- 0.8)
-
F = |- 0.8 - 1.2 - 1.6 - 2 - 2.4 - |- 1.2 - 1.6 - 2 - 2.4 - 2.8 - |
1.2
-
Fj ,i := f (x1,i , x2,j+1) F<1> =
1.6

L- 1.6 - 2 - 2.4 - 2.8 - 3.2 -
- 2 )



F0,2 := F0,i +
y0,i
l2


- 0.4 - 0.8 - 1.2 - 1.6 - 2 -
F
|
M -2,i := FM -2,i + F = - 1.2 - 1.6 - 126 --224 - 2.8 -
|
L- 1.6 - 2 - 2.4 - 2.8 - 3.2 -


2.4]
|
2.8
|
3.2|
|
3.6



A := identity(M - 1) B:= A m := 0,...M - 2 n := 0,..N - 2
h
Λm,n := if (m = n - 1) + (m - 1 = n),1,0 C := identity(M - 1) - Λ a1 := C- 1B β1 := C-1F<0> i := 1,..N ai := (C - Aai )-1 B C-1A + C -1B = 0.01 C-1B = 0.005 ai+1 := (C - Aai )-1B
βi+1 := (C - Aai )-1 (Aβi + F<i>) i := 0,..N j := 0,..M - 2 Wj ,i := yj+1,i i := N - 1,...0 W<i> := ai+1W<i+1> + βi+1 i := 0,..N j := 0,...M - 2 yj+1,i := Wj ,i


2.1 chima. Taqribiy yechim grafigi



2.2. chizma. To’rni ichkinuqtalaridagi yechim grafigi

2.2. Chebishev parametrlar majmuasi bilan oshkor iteratsion metodi Mathcad



Download 0.78 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling