Alisher navoiy nomidagi samarqand davlat universiteti hisoblash usullari kafedrasi
Download 5.01 Kb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- Mustaqil ishlash uchun savollar
Hosil qilingan (15.7) formula Stirling interpolyasion formulasi deyiladi. Bu formulada 2-jadvalda ko’rsatilganidek o indeksli juft tartibli chekli ayirmalar va hamda indeksli toq tartibli chekli ayirmalarning o’rta arifmetiklari qatnashadi. ! ) 2 ( ) ]( ) 1 ( [ . . . ) 2 )( 1 ( ! ) 2 ( ) ]( ) 1 ( [ . . . ) 2 )( 1 ( 2 1 2 2 2 2 2 2 2 2 2 2 n n t n t t t t n n t n t t t t ! ) 2 ( ] ) 1 ( [ . . . ) 1 ( 2 2 2 2 n n t t t 1 2 0 1 2 2 / 1 1 2 2 / 1 2 1 n n n f f f x f 1 f 2 f 3 f 4 f 5 f 6 f . . . . . . 4 3 2 1 0 1 2 3 4 x x x x x x x x x 4 3 2 1 0 1 2 3 4 f f f f f f f f f 1 2 / 7 1 2 / 5 1 2 / 3 1 2 / 1 1 2 / 1 1 2 / 3 1 2 / 5 1 2 / 7 f f f f f f f f 2 3 2 2 2 1 2 0 2 1 2 2 2 3 f f f f f f f 2 2 / 5 2 2 / 3 3 2 / 1 3 2 / 1 3 2 / 3 3 2 / 5 f f f f f f 4 2 4 1 4 0 4 1 4 2 f f f f f 5 4 / 3 5 2 / 1 5 2 / 1 5 2 / 3 f f f f 6 1 6 0 6 1 f f f 2 / 1 2 / 1 136 2-jadval Ko’rinib turibdiki, Stirling formulasining qoldiq hadi (15.8) ga teng. Gaussning ikkinchi interpolyasion formulasini nuqta uchun qo’llansa, quyidagi formula hosil bo’ladi: . (15.9) Bu formulada belgilash kiritsak va buni orqali ifodalasak, bo’lib, (10.9) formula quyidagi ko’rinishga ega bo’ladi: . (15.10) Endi, bu formulani Gaussning birinchi interpolyasion formulasi (15.3) bilan qo’shib, yarmini olsak hamda quyidagi va munosabatlardan foydalansak, u holda Bessel formulasi hosil bo’ladi: х f 1 f 2 f 3 f 4 f 2 х 2 f 2 / 3 1 2 / 1 1 2 / 1 1 2 / 3 2 1 f f f f 1 х 1 f 2 1 f 0 x 0 f 2 0 f 3 3 / 1 3 3 / 1 2 1 f f 4 0 f 1 x 1 f 2 1 f 2 x 2 f ) ( . . . ) 2 )( 1 ( ! ) 1 2 ( ) ( 2 2 2 2 2 ) 1 2 ( 1 2 2 n t t t t n f h R n n n 1 х ! ) 1 2 ( ] ) 1 ( [ . . . ) 1 ( . . . ! 3 ) 1 ( ! 2 ) 1 ( ) ( 2 2 2 1 2 2 / 1 2 3 2 / 1 2 1 1 2 / 1 1 1 2 n n u u u f u u f u u f u f f uh x L n n ! ) 2 ( ) ]( ) 1 ( [ . . . ) 1 ( 2 2 2 2 1 n n u n u u u f n h x x u 1 h x x t n 1 t u ! ) 1 2 ( ) )( 1 ]( ) 2 ( [ . . . ) 1 ( . . . ! 3 ) 2 )( 1 ( ! 2 ) 1 ( ) 1 ( ) ( 2 2 2 1 2 2 / 1 3 2 / 1 2 1 1 2 / 1 1 0 2 n n t n t n t t t f t t t f t t f t f f th x L n n ! ) 2 ( ) ]( ) 1 ( [ . . . ) 1 ( 2 2 2 2 1 n n t n t t t f n n n n f f f 2 2 / 1 2 1 2 0 ) ( 2 1 ! ) 1 2 ( ) 2 / 1 )( ]( ) 1 ( [ . . . ) 1 ( ! ) 1 2 ( ) 1 )( ]( ) 1 ( [ . . . ) 1 ( ! ) 1 2 ( ) ( . . . ) 1 ( 2 1 2 2 2 2 2 2 2 2 2 n t n t n t t t n n t n t n t t t n n t t t 137 . (15.11) Bu formula, umuman aytganda, interpolyasion formula emas, chunki u mos ravishda va tugunlarga ega bo’lgan ikkita interpolyasion ko’phadlarning o’rta arifmetigidir. Ya’ni u faqat ta tugunlarda bilan ustma-ust tushadi, lekin bu formulada funksiyaning va nuqtalardagi qiymatlari qatnashgan. (15.11) ko’phad interpolyasion bo’lishi uchun, ya’ni uning va nuqtalarda ham bilan ustma-ust tushishi uchun, unga yana bitta had qo’shish kerak: . (15.12) Bu formula nuqtalar bo’yicha tuzilgan Lagranj interpolyasion ko’phadi bilan ustma-ust tushganligi uchun uning qoldiq hadi bo’ladi. Demak, (10.11) formulaning qoldiq hadi esa (15.13) ga teng. Bessel formulasini oraliq o’rtasida, ya’ni da qo’llash qulaydir. Bu holda barcha toq tartibli ayirmalarga ega bo’lgan hadlar nolga aylanadi. Bessel formulasida quyidagi ayirmalar qatnashadi: 2 1 ! ) 1 2 ( ) 1 ]( ) 2 ( [ . . . ) 1 ( . . . ! 2 ) 1 ( 2 1 ) ( 2 2 2 1 2 2 / 1 2 2 / 1 1 2 / 1 2 / 1 0 2 t n n t n t t t f t t f t f f th x B n n ! ) 2 ( ) ]( ) 1 ( [ . . . ) 1 ( 2 2 2 2 2 / 1 n n t n t t t f n n n x x , . . . , 1 ) 1 ( , . . . , n n x x n 2 n n x x , . . . , ) 1 ( ) (x f n x 1 n x n x 1 n x ) (x f ! ) 2 ( ) ]( ) 1 ( [ . . . ) 1 ( . . . 2 ) 1 ( 2 1 ) ( ) ( 2 2 2 2 2 / 1 2 2 / 1 1 2 / 1 2 / 1 0 1 2 0 1 2 n n t n t t t f t t f t f f th x L th x B n n n ! ) 1 2 ( ) 2 / 1 )( ]( ) 1 ( [ . . . ) 1 ( 2 2 2 1 2 2 / 1 n t n t n t t t f n 1 , , . . . , n n n x x х )] 1 ( )[ ( . . . ) 1 ( ! ) 2 2 ( ) ( ) ( 2 2 2 ) 2 2 ( 2 2 1 2 n t n t t t n f h x R n n n ! ) 1 2 ( ) 2 / 1 )( ]( ) 1 ( [ . . . ) 1 ( ) ( 2 2 2 1 2 2 / 1 2 2 n t n t n t t t f x R n n )] 1 ( )[ ( . . . ) 1 ( ! ) 2 2 ( ) ( 2 2 2 ) 2 2 ( 2 2 n t n t t t n f h n n 2 / 1 t х f 1 f 2 f 3 f 4 f 2 х 2 f 2 / 3 1 2 / 1 1 2 / 1 1 2 / 3 f f f f 3 2 / 3 3 2 / 1 3 1 f f f 1 х 0 1 2 1 f f 2 1 f 0 x 2 1 2 0 2 1 f f 4 1 4 0 2 1 f f 1 x 1 f 2 2 f 2 x 2 f 138 Nihoyat, keng qo’llaniladigan formulalarning yana birini tuzamiz. Buning uchun munosabat yordamida, Gaussning birinchi interpolyasion formulasi (15.3) dan toq tartibli ayirmalarni yo’qotamiz. U holda ayirma oldidagi kozffisiyent ga teng bo’lib, ayirmaning koeffisiyenti zsa quyidagiga teng: Oxirgi ifodada almashtirish bajaramiz: Natijada, quyidagi Everett interpolyasion formulasi hosil bo’ladi: Bu formulaning qoldiq hadi tugunlar yordamida tuzilgan Gauss formulasining qoldiq hadi bilan ustma-ust tushadi: . Everett formulasi odatda jadvalni zichlashtirishda qo’llaniladi, ya’ni tugunlarda funksiya qiymatlarining jadvali berilgan bo’lsa, tugunlarda funksiya qiymatlari jadvalini tuzishda foydalaniladi, bu yerda ( — butun son). Mustaqil ishlash uchun savollar 1. Gauss, Stirling, Bessel interpolyasion formulalari. 2. Qanday holatda interpolyasion formulalarni qo’llash. 3. Misollar yechish. k k k f f f 2 0 2 1 1 2 2 / 1 k f 2 1 ! ) 1 2 ( ) ( . . . ) 1 ( 2 2 2 k k t t t k f 2 0 . ! ) 1 2 ( ) 1 )( ]( ) 1 ( [ . . . ) 1 ( ! ) 1 2 ( ) ]( ) 1 ( [ . . . ) 1 ( ! ) 2 ( ) ]( ) 1 ( [ . . . ) 1 ( 2 2 2 2 2 2 2 2 2 2 2 k t k k t k t t t k k t k t t t k k t k t t t u t 1 . ! ) 1 2 ( ) ( . . . ) 1 ( ! ) 1 2 ( ) 1 1 )( 1 )( 1 1 )( 1 1 ( . . . ) 1 1 )( 1 1 )( 1 ( 2 2 2 k k u u u k u k k u k u k u u u u . ! ) 1 2 ( ) ( . . . ) 1 ( . . . ! 3 ) 1 ( ! ) 1 2 ( ) ( . . . ) 1 ( . . . ! 3 ) 1 ( ) ( 2 2 2 2 2 0 2 2 0 0 2 2 2 2 1 2 2 1 0 0 1 2 n n u u u f u u f u f n n t t t f t t f t f th x E n n n 1 , . . . , n n x x )] 1 ( )[ ( . . . ) 1 ( ! ) 2 2 ( ) ( 2 2 2 ) 2 2 ( 2 2 n t n t t t n f h n n kh x 0 h k x 0 N h h N |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling