shartda ning ga akslanuvchi elementlari ga qarashli bo`lganligidan ni xosil qilamiz, ammo edi.
Agar , akslanishlarga murojaat qilsak, gruppa quyidagi elementlardan tuzilgan bo`ladi:
, (2)
Chunki istalgan element (2) da mavjud . Xaqiqatdan ham , da ga akslanuvchi element albatta bor bo`lib , u (1) sistemalarning biriga , masalan , ga qarashli bo`ladi; u xolda dan kelib chiqadi.
2-tarif. gruppaning gruppaga gomomorf akslanishi o‘zaro bir qiymatli bo`lsa ( ya`ni gruppaning elementlari gruppaga elementlariga o‘zaro bir qiymatli akslansa ), gruppa gruppaga izamorf akslanadi deyiladi.
Bu xolda biz va gruppalarning izamorfizmiga ega bo`lamiz . va gruppalarni izamorf gruppalar deb ataymiz. ning ga izamorf akslanishi ko`rinishda belgilanadi.
Izamorfizmda ning har bir elementi ning bitta elementiga akslanishi bilan birga , ga faqat shu bitta gina akslanadi. Demak, va da yoki bo`ladi. izamorfizmning yadrosi bitta elementdangina iborat bo`ladi, chunki ga faqat bitta akslanadi: Bu xolda (1) yoyilma ko`rinishni olib , ushbu o`zaro bir qiymatli
Do'stlaringiz bilan baham: |